

THE HIMALAYA PROJECT

A project conceived by members of the ICES Foundation and its global partners to assist in the preservation, development and understanding of a critically important ecological and social-economic region which plays a major role in the future trajectory and well-being of our entire planet.

The north face of Mount Everest seen from the path to the base camp in Tibet Autonomous Region, China. Credit: Luca Galuzzi/Wikipedia.

THE HIMALAYA PROJECT

There is an opportunity to consolidate and bring together the multiple sciences and diverse studies that relate to this important region of the world, and thereby build a knowledge system to improve the region's resilience to damage and losses from natural and man-made disasters while improving the quality of life for inhabitants in the many villages, towns and cities downstream.

The Himalayan Mountains have enormous impact on surroundings near and far, with at least 16 nations directly impacted by its unique weather and climactic conditions, its glaciers and rivers, and its overarching biogeophysical expanse.

Although occupying just 11% of the world's land surface, together these15 nations make up 45% of the world's present population. But their cooperation and shared wisdom is unfortunately less than to be desired.

This document contains a project outline that has been conceived to improve communications and future collaboration between the countries involved, and to set them on a course for producing a *unified knowledge system* of the region. Our goal is to underpin the long-term creation of ecological civilizations with well harmonised bioregions and eco-cities in an era of changing climate and frequent natural hazards.

The Himalayan Project is a major element in the global vision and mission of Geneva-based, non-political, notfor-profit *ICES Foundation (International Centre for Earth Simulation)* www.icesfoundation.org and in cooperation with the following contributing partners, namely:

The Institute for Environmental Science (IES), University of Geneva, from which Professor Martin Beniston led the European Union, funded ACQWA Project – a 5 year project to integrate the multiple water systems and subsystems of the European Alpine Region.:

http://www.unige.ch/environnement/index_en.html http://www.unige.ch/climate/Publications/Beniston.html http://www.unige.ch/climate/Projects/ACQWA.html

The Institute of Global Environment and Society (IGES), George Mason University, from which Professor Jagadish Shukla chairs a post-graduate program in Climate Dynamics, with special emphasis on the impact of a changing climate on the Asian Monsoons:

http://www.iges.org/home.html

http://www.iges.org/people/shukla.html

http://aoes.gmu.edu/climate_dynamics

http://icesfoundation.org/UsersFiles/FCKeditorFiles/file/Asian%20Monsoons%20in%20a%20Changing%20Clim ate.pdf

and

The Ecological Sequestration Trust (UK), from which Professor Peter Head leads an integrated approach to cityregion resilience, holistic planning, and underlying business models:

http://ecosequestrust.org/category/about/ http://ecosequestrust.org/our-people/executive-team/ www.youtube.com/embed/VmHAWkeD0ok?rel=0

Other partners are expected to join this effort as soon as the funding mechanisms are secured.

AN OVERVIEW OF THE HIMALAYAS

The Himalayas are a young seismically active mountain range arching across the Tropic of Cancer in Asia with over 100 peaks exceeding 7000m that are still being pushed upwards by the tectonic collision of the northward moving Indo-Australian Plate with the Eurasian Plate. The mountains extend for 2,400 km in length and between 150km in width at the eastern end to 400 km width in the west.

High altitudes have induced the formation of over 35,000 glaciers within the Himalayas, forming the source of major river systems that flow both north and south into neighboring countries. The mountains also play a major role in the flow and direction of large-scale monsoon weather systems that regularly impact the region.

Geologically, the Himalayas and their immediate surroundings are often referred to as a 'Third Pole' of Planet Earth. The region suffers frequent large-scale disasters from earthquakes, avalanches, mudslides, rock falls, floods, and extreme weather events. In addition, the glaciers are in serious retreat due to global warming, and there is a shift in much of the biological makeup of the region due to such warming.

Socio-economically, the Himalayas hugely impact all food, agriculture, energy, transportation, industrial, and public health systems within the countries that depend on its rivers. There is a patchwork of micro and macro climactic conditions created by the mountain range. Because of long-term historical conflicts however, many of these countries do not pro-actively share or coordinate their knowledge of the many physical aspects of mountain life, even though Mother Nature herself functions across national borders in a very fluid and transparent manner.

The 16 nations that have most at stake are listed as follows in order of national population size:

	Population	Land Size
China	1,354.0M (12/2012)	9,569.90M km ²
India	1,210.6M (03/2011)	2,973.19M km ²
Pakistan	183.8M (07/2013)	856.69M km ²
Bangladesh	152.5M (07/2012)	$130.17 \text{M} \text{km}^2$
Vietnam	88.8M (07/2012)	$310.07 \text{M} \text{km}^2$
Thailand	65.9M (09/2010)	$510.89M \text{ km}^2$
Myanmar	53.2M (07/2013)	653.51M km ²
Malaysia	29.8M (07/2013)	$329.61 \text{M} \text{km}^2$
Nepal	26.5M (06/2011	$140.80 \text{M} \text{km}^2$
Afghanistan	25.5M (01/2013)	$652.23 \text{M} \text{km}^2$
Cambodia	15.1M (07/2013)	$176.52 \text{M} \text{km}^2$
Tajikistan	8.0M (04/2013)	$141.51 \text{M} \text{km}^2$
Laos	6.6M (07/2013)	$230.80 \text{M} \text{km}^2$
Kyrgyzstan	5.6M (07/2012)	$191.80M \text{ km}^2$
Mongolia	3.0M (07/2014)	$1,564.12M \text{ km}^2$
Bhutan	.7M (07/2012)	$47.04 \text{M} \text{km}^2$

Regional Population = 3,230M (45% of 7,100M world population according to UCSB world population clock). Regional Land Size = 18,291M km² (12.3% of 148,940M km² world land size)

THE TIBETAN PLATEAU

With an average elevation of over 4500m and covering an area of 2,500,000 square kilometers, this region is known as the 'roof of the world' and is the headwaters of most streams in the surrounding region, and is itself surrounded by numerous mountain ranges. Furthermore, the seasonal monsoon wind shift and weather associated with the heating and cooling of the Tibetan Plateau is the strongest such monsoon on Earth.

Such well known rivers as the Yangtze, Yellow, Indus, Brahmaputra, Salween and Mekong originate in the Himalayan and Tibetan Plateau region and supply a lifeline of water, food, transport and energy to neighbouring countries. However, these rivers cross national boundaries and are therefore in high dispute with respect to water usage rights, hydroelectric damming, fishing and pollution control.

Qin Dahe, the former head of the China Meteorological Administration and winner of the 2013 Volvo Environmental prize (<u>http://www.environment-prize.com/</u>) said:

"Temperatures are rising four times faster than elsewhere in China, and the Tibetan glaciers are retreating at a higher speed than in any other part of the world. In the short term, this will cause lakes to expand and bring floods and mudflows. In the long run, the glaciers are vital lifelines for Asian rivers, including the Indus and the Ganges. Once they vanish, water supplies in those regions will be in peril."

DESIGNING ECOLOGICAL CITIES and EXPANDING TRADITIONAL CITIES

In the past 30 years, China's urban population alone has jumped to more than 700 million from less than 200 million, causing violent clashes over expropriation of farmland for development, as well as water shortages, energy shortages, transportation difficulties, air pollution and other problems. The same trends can be observed in many parts of the 15-country region.

Developing smart, intelligent and eco-friendly cities is now the priority in the years ahead, and this will require a far-sighted understanding of local, regional and global climate change, especially with respect to seasonal monsoons, changing mountain snow pack, seasonal snow melt, river flows and lurking seismic hazards.

Protection of eco-services from important bio-regions is an equally important aspect of future development planning, since such bio-regions act to support the health of nearby villages and cities. Long-term water security, food security, public safety and quality of life are all at stake.

UNIFIED KNOWLEDGE SYSTEM

Although a vast amount of local knowledge is currently available, this knowledge is neither systematically compiled nor shared between the countries of the Himalayan Mountain Region. Nor is this knowledge updated with a clear understanding of local impacts from global climate change, global warming, and global sea-level rise. Our proposal is to help create this *Unified Knowledge System* by means of a consortium of international, independent, non-political organizations led by the ICES Foundation, and in cooperation with local and international bodies of high repute, such as:

ICIMOD: <u>http://www.icimod.org/?q=abt</u> SASCOF: <u>http://dhm.gov.np/uploads/getnotice/693527908sascof4_general%20information_nepal.pdf</u> LASG/IAP/CAS: <u>http://www.lasg.ac.cn/</u>

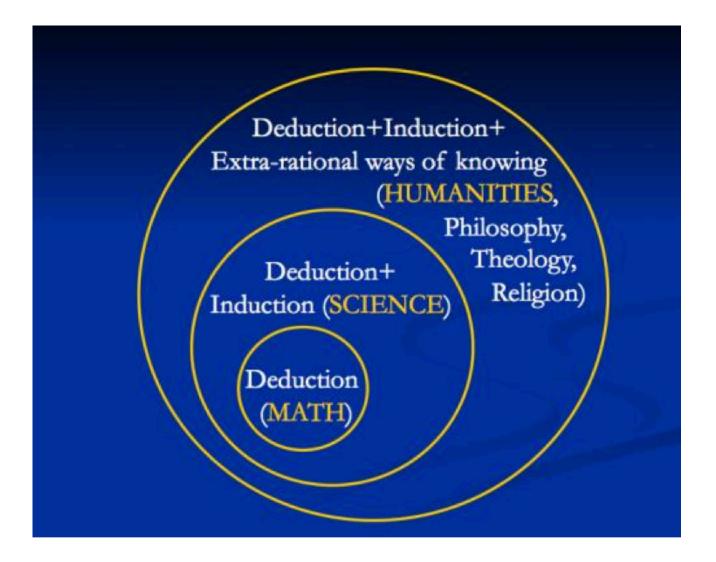
THE BASIS AND STRUCTURE OF THE UNIFIED KNOWLEDGE SYSTEM (UKS)

The basis of the UKS is a high-resolution digital elevation map (DEM) which provides a surface rendering on the complex geography that can be found throughout the entire Himalaya Region and to which the following multiple layers of additional data are attached: built environment, infrastructure, utility grids, power plants, transportation systems, land cover, farming and agricultural activities.

From this base map, a very large 3D file of information that describes all weather, hydrological and climate variables on a real-time basis will be accessible. This 'big data' file will be kept up-to-date by feeder data-streams coming in from local and regional authorities, and will include identifiable and quantifiable emissions information.

In addition to this surface information, the underlying sub-surface structure of the entire region will be defined and accessible from the base DEM, to the extent to which it is known. This file will contain all soil data, aquifers, geological faults and mineral deposits, as well as localized magnetic readings and historical seismic events.

Areas of local hazard will be of particular importance, and the best multi-physics, multi-science methods will be used to pinpoint the position of most likely occurrences. Hazards such as heavy rain, hail, flood, avalanche, glacial lake outbursts, landslide, mudslide, earthquake, fire, heat-wave, drought and many other hazards will be tracked and identified.


The essence of the UKS is an integrated holistic compilation of all the bio-geo-physical knowledge that is already known throughout the region, along with real-time feeds that keep the dynamic status of the territory available in an openly accessible manner.

A vast amount of satellite-derived Earth Observation data will feed into the system, and will add value to specific user enquires. Such satellite data will emanate from both geo-stationary satellites as well as constellations of microsatellites operated by private companies.

Using such multi-level data captured and available within or linked to the UKS, a modelling, simulation and visualization service will be available that allows the user to drill down, access and visualize all elements of interest on a hyperlocal basis. This is essentially a '*real-time big data predictive visual analytics*' function that will provide 'look ahead' capabilities and project the forward state of the region, or any area of local interest.

Finally, the UKS will ingest and assimilate as much social-economic data as possible so as to project the forward evolution of geographical developments and thereby to understand any harmful impacts on the natural bio-geophysical system, both short term and long-term. As a consequence, planners will be able to ask 'what if' questions that help clarify the consequences of adding hydro-electric dams to river systems, or changing land cover and agricultural methods, or extending city boundaries and infrastructure.

In particular, the UKS will assist nations to communicate and coordinate their skills on matters of common interest, and to assist each other in such important transboundary factors as: Mountain and plateau tectonics: surface deformations, soil types, permafrost, tundra Forests: deforestation, protection, biodiversity Land use: agriculture, industry, energy, transportation, pollution, erosion Monsoon timing and intensity: for both summer & winter events, effect of climate change Precipitation: rain, snow, hail, frost, seasonal patterns Glaciers: glacial retreat, glacial lake formation & stability Catchment basins & rivers: floods, torrents, confluence, sedimentation & bedload dynamics Hazards: earthquakes, rock fall, landslides, mudslides, run outs, floods, debris flow, avalanches, snow glide Hazard mitigation geotechnical structures: retention basins, check dams, dykes, levees & protective nets Risk mitigation: failure analysis, early warning systems, monitoring, maintenance & lifespan prolongation VISUALIZING THE VAST SCOPE OF KNOWLEDGE TO BE INTEGRATED INTO UKS

Presentation by ICES to the China RESIST Project headed by Professor Han Dawei, University of Bristol (UK) RESIST = Resilient Economy and Society by Integrated SysTems modelling http://www.icesfoundation.org/UsersFiles/FCKeditorFiles/file/Uni%20Bristol%20re%20China.pdf

Collapse of Himalayan crust on to Indo-China: <u>http://visioterra.org/VtWeb/?LAYERSTACKID=84974e0bdf7348859eeec24343e7e120&sidePanel=false</u>

Mysterious stone towers discovered in the Himalaya Mountains <u>https://www.youtube.com/watch?v=G8hH5y-dEsc</u>

Hindu Kush Himalayan Monitoring and Assessment Programme (HIMAP) <u>http://hi-map.org</u>

THE IMPORTANCE OF EARTHQUAKE LOSS ESTIMATES TO THE HIMALAYA REGION

ICES Foundation

The Himalaya - collision zone between India and Asia - generates some of the deadliest earthquakes on this planet. In addition, this collision radiates compressive energy into the Chinese provinces to the north, east and northeast of the Himalayas that leads to great and devastating earthquakes. With more than 3 million deaths due to earthquakes, China leads the world in earthquake fatalities at this time (Utsu, 2002; ICES archives 2015). The total number of earthquake fatalities in the Himalayan belt from China to Iran exceeds 6 million. According to the loss predictions of Wyss (2005), India with its large population may eventually surpass China as the country with the largest number of accumulated earthquake fatalities. Therefore, we pay more attention to earthquake risk reduction along the southern front of the Himalaya.

The ICES Foundation, using its QLARM loss estimate system (Trendafiloski et al., 2011) and expert staff, will train and coach Himalaya countries on the use of the QLARM system for mortality and injury loss estimates associated with large earthquakes - in both *near real-time mode*, and in *scenario planning mode*.

Near Real-Time Mode: After most disastrous earthquakes, the extent of losses does not become fully known during the first few days because information from devastated areas does not flow freely, especially in difficult to access mountain areas. Even then, eyewitness reports are often confusing. Therefore, rapid and reliable estimates of likely losses, based on model calculations and teleseismic information, are essential for adequate and timely rescue and recovery operations. The ICES Foundation QLARM loss estimate facility is designed to address this situation. Loss estimates by QLARM are available within 30 minutes of significant earthquakes worldwide (Wyss, 2014) and include mean damage state, number of injured and number of fatalities for each settlement, and the sum of the human losses.

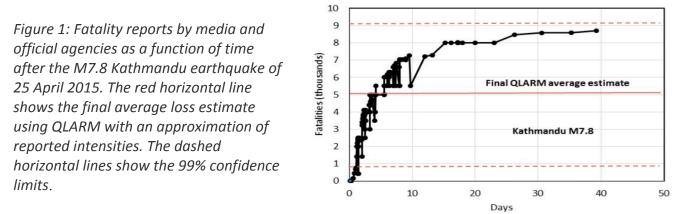
Before such losses can be estimated however, accurate information on the parameters of the earthquake in question must become available. For countries without dense high-quality seismograph networks, the source parameters have to be derived from global data. The earthquake parameters required for estimating event consequences are the hypocenters and the magnitude details.

Because of the distances between seismographs in the worldwide network, the travel time for seismic waves to reach a sufficient number of stations to allow a stable estimate of source parameters is about 10–15 minutes. Approximate source parameters become available by email after this delay. Only then, can the QLARM system commence preparations for loss estimates.

Given the location and magnitude of an earthquake, the QLARM system calculates intensity of shaking at the appropriate distance for every settlement in the database. Then the probability of all five damage grades is calculated for each of the building classes according to the respective fragility curves. In a third step, the number of fatalities and injured in three severity classes is calculated using a casualty matrix. It is necessary to include information on the current quality of building stock, soil properties, and present populations for these calculations to be accurate.

The moment tensor solutions distributed by the USGS, or others, can be of considerable help in refining QLARM loss estimates, especially if they also include estimates of rupture direction and fault finiteness. Improving the speed and quantity of moment tensor messages, together with the inclusion of identification of the fault plane and adding fault finiteness estimates, may well be one of the most useful additions for refining QLARM loss estimates in countries without dense local seismograph networks – such as in the countries addressed by this proposal.

It would be very desirable if more local and regional seismograph networks were able to electronically distribute high-quality calculations of earthquake epicenters in real time, especially depths, because this would cut about 10 minutes from analysis delays. The weakest parameter in teleseismic earthquake hypocenter data is the depth of the energy release. This parameter is of crucial importance because the damage caused at the Earth's surface decreases rapidly with increasing depth of the earthquake. The magnitude of hypocentral errors (approximately 15 km for USGS teleseismic locations), could be reduced by a factor of 3 to 4, with good local data availability. This in turn could influence the estimate of the number of fatalities in some cases by a factor of 10. Although we are currently able to correctly separate disastrous earthquakes from non-consequential ones in over 90% of the cases, input from well-run regional and local seismograph networks could strongly improve the accuracy of QLARM loss estimates in near real-time mode.


Application of satellite images to loss quantification: Direct inspection of satellite photographs of the damage to the built environment immediately after an earthquake can significantly contribute to real-time loss estimates. The effective use of satellite imagery (e.g. Huyck et al., 2014; Taubenboek et al., 2014) requires that a satellite pass over the affected area, that the earthquake has occurred during daytime, and that clouds are not obstructing the view from space. Additional methods to quantitatively estimate the degree of damage to buildings and to derive from this the approximate number of injured should be developed.

On the basis of satellite images, 3D models of cities can be developed, with the height of every building calculated from its shadow. On the basis of height, an approximate assignment of buildings to one or two groups of a given fragility class is possible. The fragility (inability to withstand shaking) is given as a probability that a building may sustain a certain degree of damage (e.g. collapse) as a function of intensity of ground shaking. From images of the Tandem InSAR mission the height of buildings can measured to 3m accuracy, which is to within one floor height of a building.

Creation of a local encyclopedia of soil conditions: Knowing the local soil conditions is important for estimating losses because these conditions can lead to amplifications of the ground accelerations by factors of 2 or more (e.g. Parvez and Rosset, 2014). However, reports on local conditions, including microzonation studies, are scattered in the literature (sometimes restricted to grey literature), and not generally known. Therefore, a collection of relevant information is needed. Alternatively, it may be possible to reach satisfactory approximations of the local enhancement of strong ground motion using surface topography [*Wald et al.*, 2004].

The data sets in QLARM contain name, coordinates, estimated population, and a model for the vulnerability of buildings for about 2 million settlements worldwide. These data are used for peaceful purposes only.

China is leading the world at this time in earthquake fatalities and injured, but India may take this dubious position because of the great earthquakes looming in the Himalaya. There are three reasons for which these two countries suffer serious human losses due to earthquakes: Great earthquakes, a large population and weak buildings in some regions. In both countries, many of the disastrous earthquakes occur in mountainous areas where communication and access are especially difficult. Underestimating the number of casualties for several days after a large earthquake is common in China as well as in the Himalayan countries. For example, in the Wenchuan magnitude 8 earthquake of 12 May 2008, approximately 85,000 people were killed, but the responsible Chinese agency believed for several days that the fatalities only numbered about 5% of this. In Nepal a similar underestimation of casualties lasted for days after the M7.8 earthquake near Kathmandu on 25 April 2015 (Figure 1). By further testing QLARM loss estimates for China and Himalayan countries and by improving the datasets for this entire area, we can get a better quantitative understanding of earthquake losses in future.

Using the QLARM loss estimate system in scenario planning mode. Estimating losses before they have occurred will allow authorities to plan for, prepare and mitigate the future consequences as much as possible regarding what will happen eventually along these plate boundaries. After the events occur, it also affords an opportunity to compare the calculations with reality.

It is certainly disconcerting to calculate the numbers of fatalities and injured in future earthquakes because grim pictures result, and because such estimates are subject to many assumptions. Nevertheless, uncertain as these estimates may be, one must attempt to make them, as best one can. The motivation for such studies is to provide a quantitative basis for setting priorities in mitigation efforts and to prepare for the realistic scale of a likely disaster. Although the exact time of future earthquakes is unknown, there is no doubt that magnitude eight classes earthquakes will happen along the front of the Himalaya. The forces of plate tectonics that cause India to collide with Asia, thrusting up the most magnificent mountain chain on the planet, continue to generate great earthquakes in this collision zone (e.g. Bilham, 2006; 2014).

Quantitative estimates of potential losses caused by future great earthquakes along the Himalaya (Wyss, 2005) suggest that as many as 150,000 people may die, 300,000 may be injured and typically 3,000 settlements will be affected in single events. Scenario mode results used here vary and are based on ruptures of 150 km segments of the plate boundary at seven positions, where sufficient elastic energy is believed to be stored for magnitude eight earthquakes. The method of calculating these results was calibrated using the 17 disastrous Indian earthquakes that have occurred since 1980. About 50 settlements in the region are considered most at risk because in each settlement more than 2000 fatalities are calculated to occur.

Of the seven scenarios proposed in March by Wyss (2005), two have come true. In October 2005 the Kashmir M7.6 earthquake caused about 85,000 deaths, as Wyss had predicted (Wyss, 2006). In April 2015 the M7.6 Ghorka earthquake killed about half as many as Wyss (2005) had estimated in his Nepal scenario (Wyss, 2016).

The QLARM data sets and loss calculation system have proven very well calibrated for China. This is demonstrated by the retrospective calculation of the probable losses in the Haicheng, M7.3, 1975 earthquake, had no evacuation taken place. Wyss and Wu (2014) estimate that about 8,000 fatalities and 27,000 injuries were avoided. Quantitative estimates of losses by QLARM in future earthquakes in China and the Himalayas can therefore be of real use in reducing human suffering in the study area.

Together with Chinese, Indian and Nepalese expert seismologists The ICES Foundation will design scenario mode loss estimates for extended faulting in large earthquakes along faults that these experts deem likely to rupture.

Finally, and in addition, the data set in the QLARM system regarding settlements can be used to estimate losses due to calamities and disasters wrought by flooding, land slides and fires that are becoming more frequent in the Himalaya due to land-use change and global climate change.

References

Bilham, R. (2006). Dangerous tectonics, fragile buildings, and tough decisions, *Science* **311**, 1873-1875. Bilham, R. (2014), Aggravated earthquake risk in South Asia: Engineering vs. human nature, in *Earthquake hazard, risk and disasters*, edited by M. Wyss, pp. 103-141, Elsevier, Waltham, Massachusetts.

Huyck, C., E. Verrucci, and J. Bevington (2014), Remote sensing for disaster response: A rapid, imagebased perspective, in *Earthquake hazard, risk and disasters*, edited by M. Wyss, pp. 1-24, Elsevier, Waltham, Massachusetts.

Parvez, I. A., and P. Rosset (2014), The role of microzonation in estimating earthquake risk, in *Earthquake hazard, risk and disasters*, edited by M. Wyss, pp. 273-308, Elsevier, Waltham, Massachusetts.

Taubenböck, H., C. Geiß, M. Wieland, M. Pittore, K. Saito, E. So, and M. Eineder (2014), Remote sensing for earthquake research: From pre-event risk analysis to post-event damage assessment and recovery monitoring, in *Earthquake hazard, risk and disasters*, edited by M. Wyss, pp. 25-53, Elsevier, Waltham, Massachusetts.

Trendafiloski, G., M. Wyss, and P. Rosset (2011), Loss estimation module in the second generation software QLARM, in *Human Casualties in Earthquakes: Progress in Modeling and Mitigation*, edited by R. Spence, E. So and C. Scawthorn, pp. 381-391, Springer.

Utsu, T. (2002), A list of deadly earthquakes in the World: 1500-2000, in *International Handbook of Earthquake Engineering and Seismology*, edited by W. K. Lee, H. Kanamori, P. C. Jennings and C. Kisslinger, pp. 691-717, Academic Press, Amsterdam.

Wyss, M. (2005). Human losses expected in Himalayan earthquakes *Natural Hazards* **34**, 305-314. Wyss, M. (2006), The Kashmir M7.6 shock of 8 October 2005 calibrates estimates of losses in future Himalayan earthquakes, paper presented at Proceedings of the Conference of the International Community on Information Systems for Crisis Response and Management, Newark.

Wyss, M. (2014), Ten years of real-time earthquake loss alerts, in *Earthquake Hazard, Risk, and Disasters*, edited by M. Wyss, pp. 143-165, Elsevier, Waltham, Massachusetts.

Wyss, M., and Z. L. Wu (2014). How Many Lives Were Saved by the Evacuation Before the M7.3 Haicheng Earthquake of 1975?, *Seismological Research Letters* **85**(1), 126-129, doi:10.1785/02201 30089.

Wyss, M. (2016). Four loss estimates for the Gorkha M7.8 earthquake, 25 April 2015, before and after it occurred, *Seismological Research Letters*, submitted.

SEISMIC RISK IN THE HIMALAYA AND ITS MITIGATION

ICES Foundation

China currently leads the world in earthquake fatalities (Utsu, 2002; ICES archives 2015), but India will take over this dubious leadership when enormous casualties result from great Himalayan earthquakes in the not too distant future. Figure 1 shows the approximate rupture regions of historic earthquakes along the collision zone of India with Asia. Clearly, repeats of these and similar earthquakes will happen along this plate boundary.

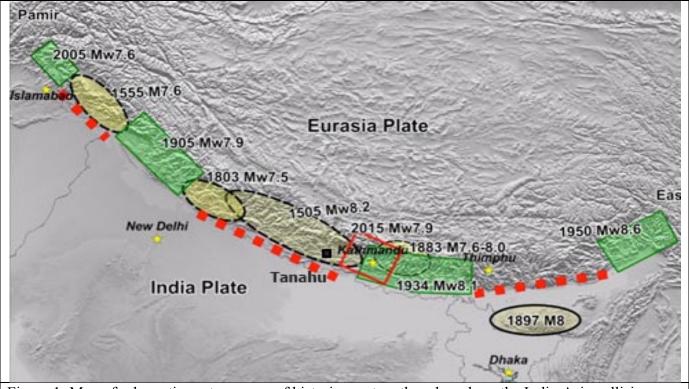


Figure 1: Map of schematic rupture areas of historic great earthquakes along the India-Asia collision zone. The most likely next segments to rupture in great earthquakes are marked by red dashes. The two earthquakes for which QLARM estimates had correctly predicted the losses are the M7.6 Kashmir 2005 and the M7.9 Kathmandu (Gorkha) 2015 earthquakes.

The Himalayan plate boundary is loaded by compression due to India advancing toward Asia, which will certainly produce great earthquakes with many meters of slip in the future (Figure 2). Because of the large population in this area, the human losses in future Himalayan earthquakes will surpass everything we have seen so far. The first earthquake in which the number of fatalities will be close to 1 million is likely in the Himalaya.

QLARM (Quake Loss Assessment for Response and Mitigation) is a tool operated by experts at the ICES Foundation, with which one can estimate numbers of fatalities and injured in scenario earthquakes. In such a scenario, one assumes a likely future rupture line and magnitude and calculates the strong ground motion resulting. The impact on the population in the region is then expressed in estimated numbers of fatalities and injured.

Loss scenarios claim only to predict the order of magnitude of fatalities. Nevertheless, the estimates of fatalities published in March of 2005 for the subsequent Kashmir earthquake (M7.6, October 2005) and the Gorkha earthquake (M7.8, April 2015) (Wyss, 2005) were correct to within approximately a factor of 2.5 (Wyss, 2006; Wyss, 2016, respectively) (Table 1).

	Location.	Lat. (deg.)	Lon. (deg.)	Depth (km)	М	Expected Deaths (thousand)	Number Injured (thousand)	No Settle $I \ge 7$	No Settle $I \ge 5$
1	Assam	27.8	92.3	25	8.1	24 - 49	52 - 99	160	1900
2	Bhutan	27.3	89.5	25	8.1	76 - 151	163 - 274	270	2500
3	Katmandu	28.1	84.2	25	8.1	21 -42	45 - 86	330	2600
4	W. Nepal	28.7	81.8	25	8.1	11 - 22	24 - 53	370	2800
5	Garhwal	29.7	79.6	25	8.1	58 - 115	125 - 230	380	3000
6	Dehra Dun	30.7	77.7	25	8.1	96 - 199	210 - 433	450	3300
7	Kashmir	33.0	75.0	25	8.1	67 - 137	146 - 293	550	4000

Table 1: Original estimates of 7 scenarios for earthquakes in the Himalaya (Wyss, 2005). The two scenarios that have since come true are high lighted in pink and yellow. The numbers of fatalities in Kashmir were approximately 85,000 and about 10,000 in Kathmandu.

If authorities and individuals had taken these 2005 warnings seriously, earthquake protection units (EPU) might have been constructed, saving numerous lives. An EPU, also called 'earthquake closet', is a strong construction in an area of approximately 2² meters within a dwelling, into which occupants of the vulnerable building can flee, once the initially small shaking starts (Wyss, 2012). Such a structure is similar to a tornado shelter, as available in lumber yards in the US. It is far cheaper than retrofitting the entire home and can even be assembled by the owner, if money is an issue. The probability to die in an earthquake in such a closet is 1,000 times less than to die in the house collapsing around the unit. What earthquake risks is the population of sections of the Himalayan plate boundary facing? QALRM has been calibrated by estimating fatalities correctly in case of the Kashmir and the Nepal earthquakes (Wyss, 2006; Wyss, 2016). Therefore, it is reasonable to calculate updated scenarios for losses due to future earthquakes in the Himalayas, using QLARM.

A rupture along a plate boundary can be continued within years to decades by an adjacent rupture. It is not unlikely that the Gorkha, 2015 M7.8 earthquake may be followed by an M8 event west of it. The damage that is expected to result in such a case is shown in Figure 3. As this map demonstrates, the settlements are numerous. According to the QLARM estimate, the number of settlements that may be shaken with intensity VI or larger is 2,375 (damage and casualties may occur in poorly built settlements at this intensity); the number of people affected at Intensity VI+ shaking = 23 million; the number of injured = 500,000, and the number of fatalities = 160,000, all approximately.

An even larger disaster may be in store along the Himalayan plate boundary. Suppose, in a repeat of the 1505 earthquake, the entire segment covered by that rupture and marked by red dashes in Figure 1, should

break. In that case, an earthquake with M8.7 would result and the number of injured would exceed 1 million, with at least ½ a million fatalities (Figure 4).

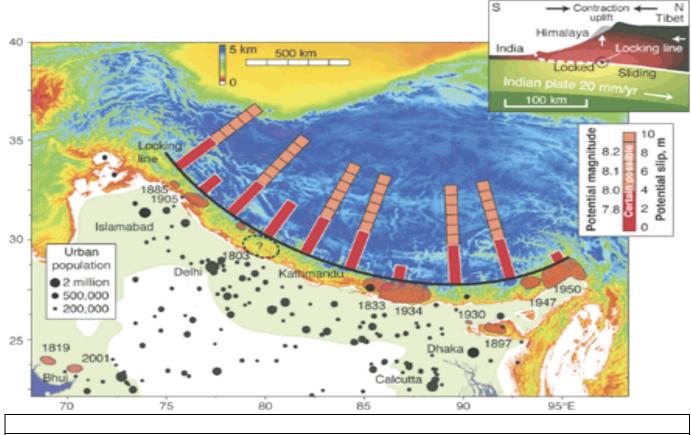


Figure 2: Map of the amount of slip stored along the Himalayan plate boundary assembled more than a decade ago (Bilham et al. 2001). Now the slip stored and the looming risk is even larger. The rate of accumulating slip is about 4 cm per year.

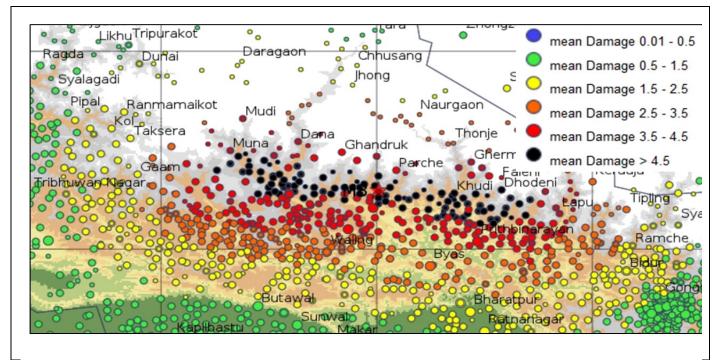


Figure 3: Map of mean damage in regional settlements if the rupture of the 2015 Nepal earthquake continued to the west in a hypothetical M8 earthquake along the same plate boundary. The scale of mean

damage goes from minor damage (green) to mostly collapse (black).

Earthquakes of magnitude 8+ cannot be avoided in the Himalaya. However, the resulting disaster could be reduced by taking mitigating measures beforehand. In the case of such a mega-disaster, any mitigating effort would result in an enormous reduction of the toll on lives and injured. The ICES Foundation is proposing to help reduce the enormous losses of lives expected in the Himalaya by quantitatively demonstrating how serious the earthquake risk is in this area and by guiding the people in constructing earthquake closets to protect themselves.

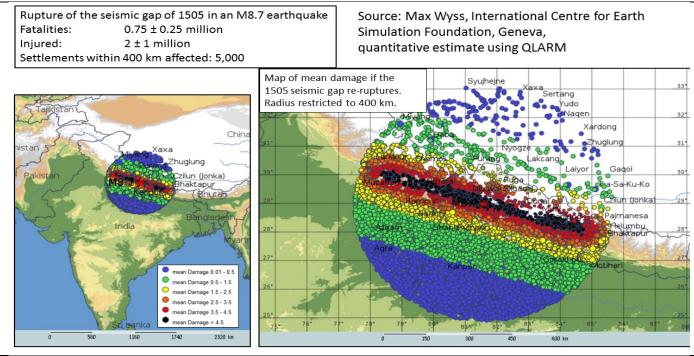


Figure 4: Map of the mean damage expected in case the 1505 earthquake repeats in an M8.7 event. The calculation is limited to a radius of 400 km.

References:

Bilham, R., V. K. Gaur, and P. Molnar (2001). Himalayan Seismic Hazard, *Science* **293**, 1442-1444. Utsu, T. (2002). A list of deadly earthquakes in the World: 1500-2000, in *International Handbook of Earthquake Engineering and Seismology*, edited by W. K. Lee, H. Kanamori, P. C. Jennings and C. Kisslinger, pp. 691-717, Academic Press, Amsterdam.

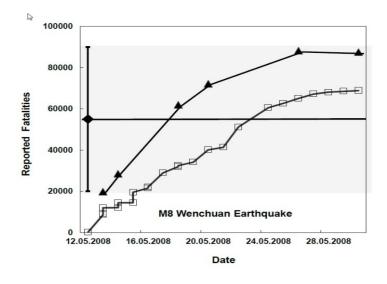
Wyss, M. (2005). Human losses expected in Himalayan earthquakes Nat. Haz. 34, 305-314.

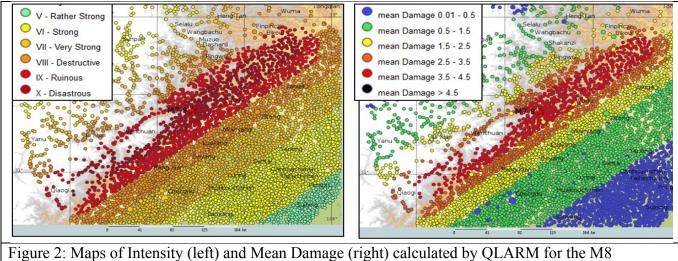
Wyss, M. (2006), The Kashmir M7.6 shock of 8 October 2005 calibrates estimates of losses in future Himalayan earthquakes, paper presented at Proceedings of the Conference of the International Community on Information Systems for Crisis Response and Management, Newark.

Wyss, M. (2012). The Earthquake Closet: Rendering Early-Warning Useful, *Nat. Haz.* **62**, 927-935, doi:10.1007/s11069-012-0177-6.

Wyss, M. (2016). Four loss estimates for the Gorkha M7.8 earthquake, 25 April 2015, before and after it occurred, *Nat. Haz.* Special Isssue, in print

ESTIMATING CASUALTIES DUE TO EARTHQUAKES IN CHINA USING QLARM


ICES Foundation


China is the country leading the world in earthquake fatalities and injured. The reason for this is a combination of three factors: Great earthquakes, a large population, and weak buildings in certain regions. The number of fatalities due to earthquakes since the year 186 BC equals about 3.1 million. This estimate is based on the list of deadly earthquakes by Utsu (2002), augmented for more recent events and accounting for 160 earthquakes in total. We show here that the computer tool QLARM and its dataset for China calculates losses in earthquakes correctly. It could be used to estimate casualties in likely future earthquakes quantitatively.

QLARM real time capability

Many of the disastrous earthquakes in China occur in mountainous regions where communication and access are especially difficult. For example in the Wenchuan magnitude 8 earthquake on 12 May 2008, approximately 85,000 people were killed, but the responsible Chinese agency believed for several days that the fatalities numbered about 5% of this. Figure 1 shows that the QLARM calculation assessed the Wenchuan earthquake disaster correctly many days before officials realized the extent of the calamity.

Figure 1: Fatalities (open squares) and the sum of fatalities plus missing (solid triangles) as a function of the date after the Wenchuan M8 earthquake 2009, as reported by the Chinese News Agency, compared to the estimate by the QLARM team 100 minutes after the disaster (diamond), with its uncertainty (vertical bar). This early estimate was performed with input from a Chinese colleague who believed the magnitude was 8 not 7.5 as first reported in the west.

Wenchuan earthquake. Each dot represents a settlement in the dataset of QLARM.

The maps in Figure 2 show that the coverage of settlements in the QLARM database is dense. For China, the database contains 177,827 settlements, based on the 2010 census. The correct calculation of the total number of fatalities by QLARM during the first minutes, without input from the affected area, qualifies the value of using QLARM for estimating losses for earthquakes in China. This has been confirmed again more recently since 2008 in the case of the 20 earthquakes around the globe for which QLARM received an SMS requesting a calculation (Table 1).

V	Manath	Davi	T.a.a	T - 4		м	Est(min)	E-+()	$\nabla = t(aba)$	I:(-1)	A 1	Delay
Year	Month	Day	Lon	Lat	dep	М	Fat(min)	Fat(max)	Fat(obs)	Inj(obs)	Alert	(min)
2008	1	9	85.15	32.34	10	6.3	0	10	0		yellow	29
2008	5	12	103.27	31.08	10	8.0	40'000	100'000	87,652	374,171	red	100
2009	8	28	95.68	37.72	10	6.2	0	10	0		yellow	32
2010	4	13	96.67	33.26	45	6.9	200	4'000	2'968	10'701	red	23
2011	11	1	43.63	82.38	10	6.0	0	200	0		orange	47
2012	3	8	81.46	39.39	10	5.8	0	0	0		green	31
2012	6	29	84.79	43.45	20	6.4	0	50	0	52	yellow	25
2012	8	12	82.54	35.67	10	6.3	0	10	0		yellow	46
2013	4	20	102.96	30.28	12	6.6	200	2'300	217	12'211	red	44
2013	7	21	104.18	34.52	10	5.9	0	300	95	1'243	orange	34
2014	2	12	82.59	36.04	10	6.8	0	50	0		yellow	31
2014	10	7	100.52	23.41	10	6.0	0	400	1	300	orange	62
2014	11	22	101.62	30.30	10	5.8	0	200	5	54	orange	19
2014	12	6	100.48	23.36	8	5.5	0	10	1	22	yellow	59
2015	2	22	85.69	44.18	10	5.8	0	5	0		yellow	23
2015	4	25	87.26	28.37	10	5.7	0	20	0		yellow	464
2015	7	3	78.21	37.44	10	6.1	0	200	3	71	orange	316
2016	1	13	84.24	42.21	10	5.6	0	0	0		green	60
2016	1	20	101.58	37.72	10	5.9	0	50	0		yellow	24
2016	5	11	94.99	32.04	10	5.5	0	10	0		yellow	35

Table 1: List of real time alerts by QLARM since 2008. The minimum and maximum estimates of fatalities are compared with the observed numbers (USGS or the Relief Web). The delay with which the alerts were received by subscribers is given in the last column.

During the period covered by Table 1, two significant earthquakes occurred for which QLARM did not get an SMS requesting calculation. For these two earthquakes in the list a communication problem increased the delay an order of magnitude above the normal. The median delay time, counting all events however, was 35 minutes.

All of the real time calculations contained the actual observed number of fatalities within their estimate range, meaning that the loss estimates were all correct. The reason for QLARM estimates of fatalities being on the high side is that in real time the hypocenters are afflicted by certain errors. Moving the hypocenters closer to settlements within the errors, can give higher fatality counts, for example. Because this may exist in reality the QLARM operator accounts for this possibility.

QLARM estimate of lives saved in the Haicheng M7.3 earthquake.

Given the proven correct estimates of fatalities by QLARM as detailed in the previous section, we have calculated how many lives were saved by the evacuation before the Haicheng, M7.2, 1975 earthquake (Wyss and Wu, 2014). This is the only estimate of fatalities saved by an evacuation before an earthquake that we know of.

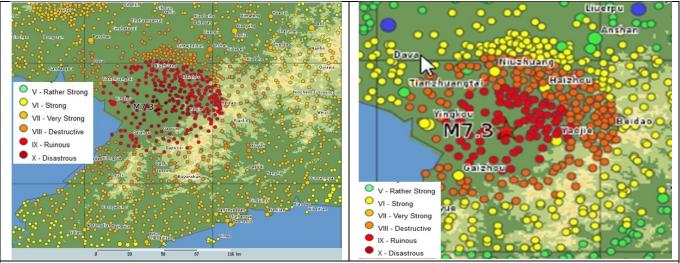


Figure 3: Maps of estimated Intensities in a large area (left) and Mean Damage in the epicentral area for the Haicheng 1975 earthquake, modeled as a point source using QLARM.

In this case, we calculated how many people would have died if the normal number of people had been at home. First, we estimated the Intensities, using various attenuation relationships. The best fitting match of Intensities is shown in Figure 3 left. Next we estimated the total number of fatalities expected if 20% fewer people lived in the area at the time of the earthquake than in the census of 2010. Table 2 shows the comparison of our results with actual observed number of fatalities according to two sources (Quan, 1988 and Wang et al., 2006).

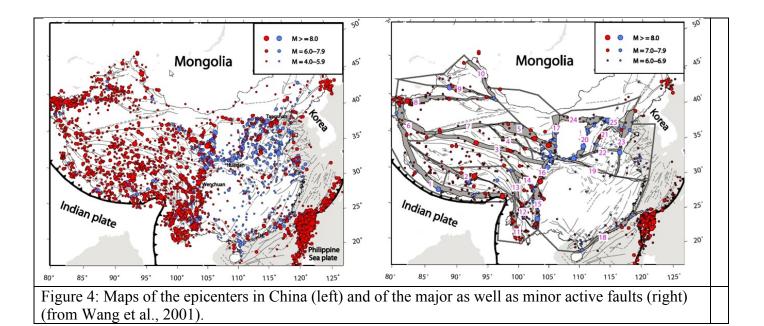
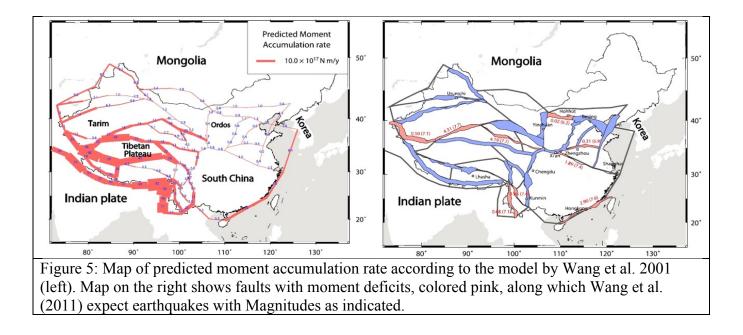

Population	Fat(calc)	Fat(obs)	Fat	Inj(max)	Inj(obs)	Inj	Source
			calc-obs			Ave-Obs	observed
2010	11,800			60,000			
1975	9,400	1,328	8,100	48,000	16,980	31,000	(Quan, 1988)
1975	9,400	2,041	7,400	48,000	24,538	23,500	(Wang et al., 2006)

Table 2: Comparisons of the average calculated (calc) numbers of fatalities (Fat) and of the maximum number of injured (Inj) that would have resulted without evacuation, with the respective observations (obs) as cited by the two sources given in the last column. The top row shows the results using the population numbers of 2010. For the second and third rows it is assumed that the rural population in the epicentral area numbered 20% less in 1975 than in 2010.


We concluded that about 8,000 fatalities and 27,000 injured, had been saved respectively. Although the error margin of \pm 60%, is large, the order of magnitude is correct.

Using the QLARM loss estimate system for China in scenario planning mode.

Estimating losses before they have occurred will allow authorities to plan for, prepare and mitigate the future consequences as much as possible, knowing approximately what will happen eventually along these plate boundaries. After the events occur, it also affords an opportunity to compare the calculations with reality.

The seismicity of China is complex, with the western part most active, although the northern part has experienced many historic earthquakes as well (blue in Figure 4, left). From this complicated picture, Wang et al. (2011) have extracted the major fault zones and positioned the major earthquakes (Figure 4, right).

The important information to know is which faults are most likely to rupture in the near future. As reliable prediction of earthquakes is currently not possible, an estimate of strain accumulation is key. Wang et al. (2001) proposed a model by which the strain accumulation in units of seismic Moment is derived (Figure 5, left). This Figure makes it quantitatively visible that the greatest strain accumulation occurs in the SW, with the center eastern part (CE) riddled with faults along which the strain accumulation rates are very low. That means large earthquakes are expected in the SW, but there can be surprises in the CE. These facts are generally known and they make it difficult to anticipate earthquakes in China. Nevertheless, Wang et al. (2011) mark sections pink where large earthquakes are to be expected, according to their model.

The question QLARM calculations may answer is this: What order of magnitude of casualties should one expect if one of the fault sections marked pink by Wang et al. (2011) should rupture in an earthquake with the M indicated by Wang et al. (2011)?

Figure 6 shows the maps of intensities and mean damage to be expected, due to an earthquake of M7.4 (that is 150 km rupture length) that emanates from Xi'an toward the SE, along the pink line in Figure 5. In such a case tens of thousands would probably die and up to 100,000 injured would have to be cared for. These numbers are very high because the population living in the area of strong shaking (MMI \geq 5.5) is more than 18 million, distributed in about 3,000 settlements.

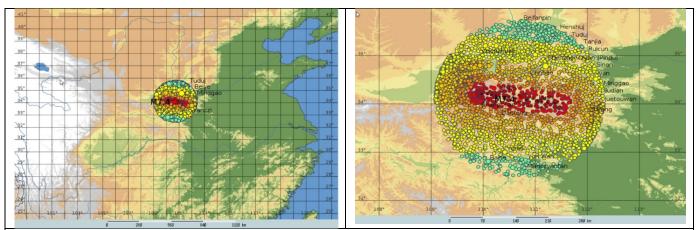


Figure 6: Map of approximate intensities (left) and mean damage (right) in case of a hypothetical earthquake of M7.4 (150 km rupture length, east of Xi'an. The calculation is limited to a radius of 400 km. This is only a rough test without detailed consideration of the fault line and magnitude. No endorsement is implied of such an earthquake to occur.

We stress that the model shown in Figure 6 is hypothetical and only approximately follows the suggestion by Wang et al. (2011) that east of Xi'an the seismic moment necessary for an earthquake of M7.4 may have accumulated by now. We purposely do not give specific numbers for the estimates of fatalities and injured and do not show close up maps. No action is recommended on the basis of the loss estimate in Figure 6. This is simply a quantitative estimate of a fact that is generally known, namely: If a large earthquake happens in a populated part of China, the losses will be serious.

More reliable scenarios could be calculated for any active fault in China using QLARM, and with the collaboration of Chinese experts.

References

Quan, Y. (1988). The February 4, 1975, Haicheng, Liaoning Province, M7.3 earthquake, in *Earthquake Cases in China (1966~1975)*, edited by Z. Zhang, L. Luo, H. Li, L. Chen and X. Li, p. in Chinese, Seismological Press, Beijing.

Utsu, T. (2002). A list of deadly earthquakes in the World: 1500-2000, in *International Handbook of Earthquake Engineering and Seismology*, edited by W. K. Lee, H. Kanamori, P. C. Jennings and C. Kisslinger, pp. 691-717, Academic Press, Amsterdam.

Wang, H., M. Liu, J. Cao, X. Shen, and G. Zhang (2011). Slip rates and seismic moment deficits on major active faults in mainland China, *J. Geophys. Res.* **116**, doi:doi:10.1029/2010JB007821.

Wang, K., Q.-F. Chen, S. Sun, and A. Wang (2006). Predicting the 1975 Haicheng Earthquake, *Bull. Seismol. Soc. Am.* **96**, 757-795, doi:10.1785/0120050191.

Wyss, M., and Z. L. Wu (2014). How Many Lives Were Saved by the Evacuation Before the M7.3 Haicheng Earthquake of 1975?, *Seismol. Res. Lett.* **85**, 126-129, doi:10.1785/02201 30089.

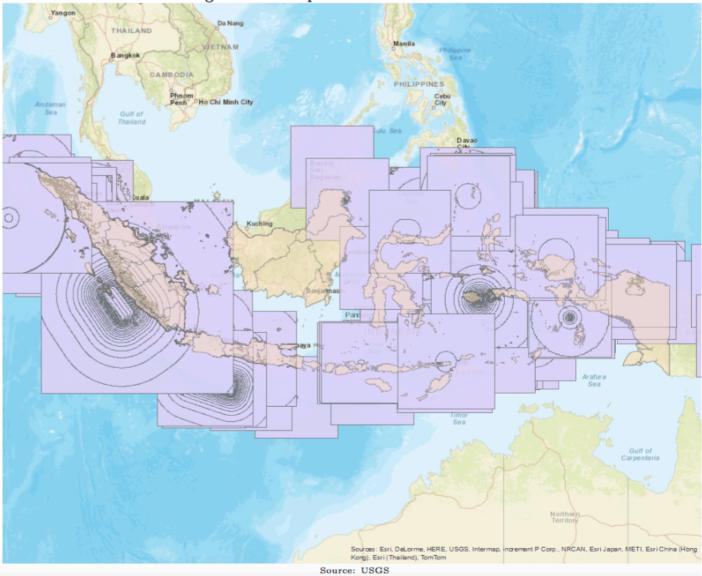


Figure 2: Earthquakes in Indonesia 2004-2014

THE IMPORTANCE OF ASIAN MONSOON DYNAMICS TO THE HIMALAYA REGION

Press Release 2 September 2015

LASG/IAP and ICES sign collaboration agreement for the Himalayan Region and establishment of Asian Centre for Earth System Simulation

Mountains are among the regions that are most sensitive to climate change and to the impacts of human activities. The Himalayan Region, characterized by the massive mountain ranges of the Himalaya, has therefore attracted wide research interest. The State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS) signed a cooperation agreement with the International Centre for Earth Simulation (ICES) Foundation on 19 August, 2015 to boost research on the dynamics of the Himalayan Region. Following the agreement, an Asian Centre for Earth System Simulation (ACESS) will be established.

ICES Foundation is a Geneva-based, not-for-profit organization and the Himalaya Project is a major element in its global vision and mission. LASG/IAP has been devoted to Tibetan Plateau research since 1980s, including its impact on monsoons and climate. Both parties have agreed to collaborate and to share expertise and knowledge with ACESS such that they build value and working experience in matters relating to the Himalayan Region and its impact on weather, climate, geological, biological and socioeconomic factors throughout Asia and the rest of the world - with focus on data visualization, climate modeling, water & energy resources, and disaster risk reduction. At present the ACESS International Project Office (IPO) is located in LASG/IAP.

LASG/IAP/CAS will be primarily responsible for carrying out research and development projects in China and for leveraging its local knowledge, contacts and expertise. The responsibilities of ICES include advising ACESS in the use of advanced digital visualization techniques and implementing quality control systems of an international standard while assisting ACESS to collaborate with other members of the ICES community.

Director-General of IAP/CAS Prof. ZHU Jiang, wished the cooperation could take full advantage of both parties' strength and develop new climate system insights for the Himalaya Project. One of four advisors of the IPO and also a CAS academician, Prof. WU Guoxiong commented that, "The signing of the project and inauguration of ACESS is a continuation of the successful collaboration between LASG/IAP and ICES as well as other international agencies in the previous stages of Tibetan Plateau research. Formation of ACESS signals a new phase of cooperation in the field".

Dr. Robert Bishop, President & Founder of ICES indicated the importance of Himalaya and Tibetan Plateau dynamics to the entire world system and that this partnership would shed new light on the extent of their global impact.

Background:

LASG/IAP was founded in 1985 and its priority research areas include: (I) Earth System model development and application, (II) weather and climate dynamics, (III) the predictability of weather and climate, and (IV) geophysical fluid dynamics. <u>http://www.lasg.ac.cn/</u>

ICES is a non-profit organisation whose mission is to collate and integrate global pools of knowledge from across scientific and socio-economic disciplines and develop holistic modelling and simulation to predict the future directions and scenarios of various Earth Systems, especially those affecting climate change, extreme weather, geoengineering, resource depletion, fresh water availability, food security, public health and safety, and hazard reduction and mitigation. http://www.icesfoundation.org

"The Himalaya Project" has been conceived by ICES to improve communication and collaboration among governments, academic and commercial organizations in the 16 nations that are either bordering, exercising jurisdiction or directly impacted by events occurring in the Himalayan Region, so as to produce a unified knowledge system of the region. Such a unified knowledge system (UKS) will collate and process various data to help assess the regional and global impact of human behaviour within the area as well as to help mitigate the occurrence of natural disasters. At the same time, the UKS will help in the design and maintenance of a thriving ecological civilization throughout the region.

<u>LASG/IAP-ICES Partnership presentation given at the ICES Biennial Workshop in Geneva</u> <u>by Professor Wu Guoxiong on 5th November 2015</u>

Other Key presentation material available from the various Key State Laboratories of the Chinese Academy of Sciences:

Introduction to LASG/IAP/CAS: Laboratory for Atmospheric Sciences & Geophysical fluid dynamics

Himalayas Climate Modeling: development of a high-resolution Earth System Model and Asian climate change risk assessment

Variation in the Coupled Land-Atmosphere System over the Tibetan Plateau and its global climate impact

Land Surface Hydrology Modeling

High Resolution Ocean Model and Coupled Model at LASG/IAP/CAS

Current super El Nino event and impacts on China climate in spring and summer http://www.bulletin.cas.cn/ch/reader/view full html.aspx?file no=20160211&fl%20ag=1

Monsoons in a changing climate http://indico.ictp.it/event/8054/other-view?view=ictptimetable

The unique geology of the Himalayan Region:

Mount Everest: how it was made
https://www.youtube.com/watch?v=rZNm9 LiyXk
K2: the world's most dangerous mountain climbing
https://www.youtube.com/watch?v=TZaGDoa9vtQ
Constraining the timing of the India-Asia continental collision by the sedimentary record
http://download.springer.com/static/pdf/968/art%253A10.1007%252Fs11430-016-9003-
6.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs11430-016-9003-
6&token2=exp=1496735940~acl=%2Fstatic%2Fpdf%2F968%2Fart%25253A10.1007%25252Fs11430-016-
9003-
6.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs11430-
016-9003-6*~hmac=835ec5eed86ccddd36368605baf705a37f2ae0d3d61e1774ea672c01f93b1f33
New insights into continental deformation in northwestern Tibet
https://eos.org/research-spotlights/new-insights-into-continental-deformation-in-northwestern-
tibet?utm_source=eos&utm_medium=email&utm_campaign=EosBuzz051118
Fossils provide new clues to Tibetan Plateau's evolution
https://eos.org/articles/fossils-provide-new-clues-to-tibetan-plateaus-
evolution?utm source=eos&utm medium=email&utm campaign=EosBuzz121517
Himalayan migration northward found to be the result of tectonic lift
http://phys.org/news/2016-08-himalayan-migration-northward-result-tectonic.html
Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the
Tibetan Plateau
http://math.mit.edu/~bush/wordpress/wp-content/uploads/2012/10/Dynamic_topography1.pdf
Ancient buried canyon discovered in South Tibet
http://www.caltech.edu/content/caltech-geologists-discover-ancient-buried-canyon-south-tibet
Satellites peer into rock 50 miles beneath Tibetan Plateau
https://news.osu.edu/news/2015/07/21/satellites-peer-into-rock-50-miles-beneath-tibetan-plateau/
Sediment transport processes across the Tibetan Plateau inferred from robust grain-sized lake sediments
https://www.clim-past.net/10/91/2014/cp-10-91-2014.pdf
New research shows Chinese continental shelf of exotic origin collided with continental China 100M years ago
http://thewatchers.adorraeli.com/2015/09/23/new-research-shows-chinese-continental-shelf-of-exotic-origin-
collided-with-continental-china-100-million-years-ago/
Himalaya Tectonic Dam with a discharge
http://www.gfz-potsdam.de/en/media-communication/press-releases/details/article/tektonischer-himalaya-
staudamm-mit-abfluss/?cHash=d30794c4615bf0089dffd30e1e406d
High-resolution interactive modeling of the mountain-glacier interface: an application over Karakoram
https://www.the-cryosphere.net/7/779/2013/tc-7-779-2013.pdf
Geology and geography of Tibet and Western China
http://www.shangri-la-river-expeditions.com/wchinageo/wchinageo.html
Deciphering the Bay of Bengal's tectonic origins
https://eos.org/research-spotlights/deciphering-the-bay-of-bengals-tectonic-
origins?utm_source=eos&utm_medium=email&utm_campaign=EosBuzz82616
A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet
http://engine.scichina.com/publisher/scp/journal/SCES/60/9/10.1007/s11430-017-9075-8?slug=full%20text
Analytical and numerical simulations of uplift processes at the Tibet-Sichuan boundary
https://link.springer.com/content/pdf/10.1007%2Fs11589-017-0185-4.pdf

Impact of earthquakes within the Himalaya Region:

Trouble with tremors http://www.ekantipur.com/2015/01/15/opinion/trouble-with-tremors/400361.html Entire Himalayan arc can produce large earthquakes https://news.agu.org/press-release/entire-himalayan-arc-can-produce-large-earthquakes/ Did an earthquake shrink Mt. Everest? India is going to check https://www.washingtonpost.com/news/worldviews/wp/2017/01/24/did-an-earthquake-shrink-mount-everestindia-is-going-to-check/?hpid=hp hp-cards hp-card-world%3Ahomepage%2Fcard&utm term=.4ddc4823da49 Better understanding seismic hazards https://asunow.asu.edu/20160822-discoveries-asu-researchers-earthquake-faulting-mountain-building Human losses expected in Himalavan earthquakes http://www.wapmerr.org/publication/Wyss Himalaya Scenarios2005.pdf Ancient temples in the Himalava reveal signs of past earthquakes http://www.seismosoc.org/news/ssa-press-releases/srl/ IIT Roorkee's new warning system claims to alert before earthquake strikes https://indianexpress.com/article/technology/science/iit-roorkees-new-warning-system-claims-to-alert-beforeearthquake-strikes-5511409/ Bhutan earthquake opens doors to geophysical studies https://eos.org/project-updates/bhutan-earthquake-opens-doors-to-geophysicalstudies?utm source=eos&utm medium=email&utm campaign=EosBuzz081718 New models explain unexpected magnitude of China's Wenchuan quake https://eos.org/research-spotlights/new-models-explain-unexpected-magnitude-of-chinas-wenchuan-quake Key factors influencing the mechanism of rapid and long runout landslides triggered by 2008 Wenchuan guake http://www.geoenvironmental-disasters.com/content/pdf/s40677-014-0001-6.pdf Location and moment tensor inversion of small earthquakes using 3D Green's functions in models with rugged topography: application to the Longmenshan fault zone http://link.springer.com/article/10.1007/s11589-016-0156-1?utm campaign=CON29747 1&utm medium=newsletter&utm source=email&wt mc=email.newsletter.8.CO N29747.ISI 1 Geographical analysis of community resilience to seismic hazard in Southwest China http://link.springer.com/article/10.1007/s13753-016-0091-8?utm campaign=CON30776 1&utm medium=newsletter&utm source=email&wt mc=email.newsletter.8.CO N30776.internal 1 Pathways to earthquake resilience in China http://www.odi.org/sites/odi.org.uk/files/odi-assets/publications-opinion-files/9893.pdf How early warning systems brought rapid relief to quake victims in China http://www.sixthtone.com/news/1000692/how-early-warning-systems-brought-rapid-relief-to-quake-victims Earthquake loss estimates applied in real time and to megacity risk assessment http://www.wapmerr.org/publication/ISCRAM Wyss.pdf Why earthquakes in China are so damaging https://www.theatlantic.com/china/archive/2013/07/why-earthquakes-in-china-are-so-damaging/278092/ The population in China's earthquake-prone areas has increased by 32 million along with increased urbanization http://iopscience.iop.org/article/10.1088/1748-9326/11/7/074028/pdf Exploring the change of risk perception before and after earthquake disaster – a case study in Taiwan https://www.preventionweb.net/files/70667 nhess2019422.pdf Kathmandu under-prepared for earthquakes http://www.ekantipur.com/2015/01/13/development/kathmandu-under-prepared-for-earthquake/400274.html Seismically active Kathmandu region in store for larger earthquake http://www.unr.edu/nevada-today/news/2016/nepal-earthquake-danger Bringing earthquake education to schools in Nepal https://eos.org/articles/bringing-earthquake-education-to-schools-in-nepal

Geomorphology reveals active decollement geometry in the central Himalaya seismic gap http://lithosphere.gsapubs.org/content/early/2015/03/12/L407.1 Badakshan Afghanistan and Pakistan earthquake 26 Oct 2015 DRR report http://www.preventionweb.net/files/46435 pwsitrep2015003.pdf Regional stress field around the Taigu fault zone in Shangxi Provence, China http://download.springer.com/static/pdf/140/art%253A10.1007%252Fs11589-015-0135y.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs11589-015-0135y&token2=exp=1451066131~acl=%2Fstatic%2Fpdf%2F140%2Fart%25253A10.1007%25252Fs11589-015-0135y.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs11589-015-0135-v*~hmac=0fe85b4997a5d67b78a0a4b17e8b691b587ba1af53f8cd03881c06f1b4acc8fc Sichuan: protecting children through community capacity building and DRR http://www.adpc.net/igo/category/ID1109/doc/2016-uag0Tg-ADPC-Impact Story - China Final - web.pdf A Quaternary fault database for Central Asia http://www.nat-hazards-earth-syst-sci.net/16/529/2016/nhess-16-529-2016.pdf Relationship between the regional tectonic activity and the crustal structure in eastern Tibet plateau http://download.springer.com/static/pdf/187/art%253A10.1007%252Fs11589-016-0142-7.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs11589-016-0142-7&token2=exp=1458654965~acl=%2Fstatic%2Fpdf%2F187%2Fart%25253A10.1007%25252Fs11589-016-0142-7.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs11589-016-0142-7*~hmac=5005322c5a80ae4e064f0572c828c47a314c90a0958e9700fee7ec5c7276bd23 Sichuan: protecting children through community capacity building and DRR http://www.adpc.net/igo/category/ID1109/doc/2016-uaq0Tg-ADPC-Impact Story - China Final - web.pdf A Ouaternary fault database for Central Asia http://www.nat-hazards-earth-syst-sci.net/16/529/2016/nhess-16-529-2016.pdf Relationship between the regional tectonic activity and the crustal structure in eastern Tibet plateau http://download.springer.com/static/pdf/187/art%253A10.1007%252Fs11589-016-0142-7.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs11589-016-0142-7&token2=exp=1458654965~acl=%2Fstatic%2Fpdf%2F187%2Fart%25253A10.1007%25252Fs11589-016-0142-7.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs11589-016-0142-7*~hmac=5005322c5a80ae4e064f0572c828c47a314c90a0958e9700fee7ec5c7276bd23 3D Green's functions in models with rugged topography: application to the Longmenshan fault zone http://download.springer.com/static/pdf/558/art%253A10.1007%252Fs11589-016-0156-1.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs11589-016-0156-1&token2=exp=1468247285~acl=%2Fstatic%2Fpdf%2F558%2Fart%25253A10.1007%25252Fs11589-016-0156-1.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs11589-016-0156-1*~hmac=6796b10bf9914c2624eb71cfcdd0e549f5aa35bf156204807e31ff747898c483 S-wave velocity structure in the SE Tibetan plateau http://download.springer.com/static/pdf/358/art%253A10.1007%252Fs11589-016-0151-6.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs11589-016-0151-6&token2=exp=1468249036~acl=%2Fstatic%2Fpdf%2F358%2Fart%25253A10.1007%25252Fs11589-016-0151-6.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs11589-016-0151-6*~hmac=50d19346686fbfecb23b7d49cc1ff9d837dfb9397110372327d18662d3000d90

Scaling relations of moment magnitude, local magnitude, and duration magnitude for earthquakes originated in northeast India

http://download.springer.com/static/pdf/478/art%253A10.1007%252Fs11589-016-0154-3.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs11589-016-0154-3&token2=exp=1468247968~acl=%2Fstatic%2Fpdf%2F478%2Fart%25253A10.1007%25252Fs11589-016-0154-3.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs11589-016-0154-3*~hmac=0b703c75a5a5587cbf8aa279ec09cfe28eb0eacc4882762a981c6e97fd07a70a Earthquake recovery plan: Khyber Pakhtunkhwa (Pakistan) http://pdma.gov.pk/sites/default/files/Earthquake%20Recovery%20Plan_0.pdf Comparing Kathmandu Valley with potential earthquakes on Lembang Fault line in West Java http://rdi.or.id/websiterdi/wp-content/uploads/2016/02/3.-WP-March-2015.pdf India CSIO's quake-warning system bags two awards http://www.tribuneindia.com/news/chandigarh/community/csio-s-quake-warning-system-bags-two-awards/339274.html Earthquake science and hazard in Central Asia – conference report https://www.odi.org/sites/odi.org.uk/files/resource-documents/11151.pdf Active tectonics in Taiwan: insights from a 3D viscous finite element model http://download.springer.com/static/pdf/282/art%253A10.1007%252Fs11589-015-0137-9.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs11589-015-0137-9&token2=exp=1451066826~acl=%2Fstatic%2Fpdf%2F282%2Fart%25253A10.1007%25252Fs11589-015-0137-9.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs11589-015-0137-9*~hmac=ba58a4220727c26cb746be9ffb1faaa2d1e4fd3f1c101cec19e912aeccac8fa1 Earthquake resilient buildings – the Philippines https://drive.google.com/file/d/13VmPN-ywL-Vl1KZhxDMjXggdWBWcZIk7/view

Tsunami events driven by offshore earthquakes

Scientists say a tsunami hit China 1,000 years ago – and there's still a risk of a giant wave hitting today <u>https://www.scmp.com/news/china/science/article/2180448/scientists-say-tsunami-hit-china-1000-years-ago-and-its-risk</u>

A potential tsunami impact assessment of submarine landslide at Baiyun Depression, Northern South China Sea <u>http://www.geoenvironmental-disasters.com/content/pdf/s40677-014-0007-0.pdf</u>

Miracle survivor on mission to help close gaps in tsunami warning system

https://www.reuters.com/article/us-indianocean-tsunami-warning-system/miracle-survivor-on-mission-to-help-close-gaps-in-tsunami-warning-system-idUSKBN1YQ00K

"We can't be afraid": rebuilding in Indonesia's tsunami zone leaves city in peril

https://www.reuters.com/article/us-indianocean-tsunami-risk/we-cant-be-afraid-rebuilding-in-indonesias-tsunami-zone-leaves-city-in-peril-idUSKBN1YR027

Landslides and mudslides in the Himalaya Region

Varying impact of earthquake- and monsoon-induced landslides

https://www.earth-surf-dynam.net/7/107/2019/

Landslide preparedness guidelines for safety of building on slopes

https://nidm.gov.in/PDF/pubs/Landslide_Preparedness_Guide_.pdf

How South Asia can protect life and assets against landslides

http://blogs.worldbank.org/endpovertyinsouthasia/how-south-asia-can-protect-life-and-assets-against-landslides Flash floods and landslides disaster on 3 August 2012 along Bhagiriathi Valley in Uttarakhand

http://nidm.gov.in/PDF/pubs/uttarkashi.pdf

Landslide hazard zonation mapping using frequency mapping and fuzzy logic approach: Lachung Valley, Sikkim http://www.geoenvironmental-disasters.com/content/pdf/s40677-014-0009-y.pdf

Building resilience to chronic landslide hazard through citizen science <u>https://www.frontiersin.org/articles/10.3389/feart.2019.00278/full</u> Tajikistan: anticipating flooding and landslides <u>https://start-network.app.box.com/s/485d2np1m2g42hsiljgkhqaa8bmgio0n</u> Philippines: Participatory capacities and vulnerabilities assessment and early warning system <u>https://www.preventionweb.net/files/64849_55591641pb.pdf</u> Papua New Guinea: precursors of a catastrophic collapse <u>https://www.geomar.de/en/news/article/karstens-vulkane/</u>

Avalanches in the Himalaya Region

The Everest Avalanche Tragedy http://everestavalanchetragedy.com/mt-everest-journey.html Mystery solved for mega-avalanches in Tibet http://www.psi.edu/news/kargeltibet

The dynamics and impact of the Asian Monsoon system:

Monsoons in a changing climate http://indico.ictp.it/event/8054/other-view?view=ictptimetable Understanding the global monsoon system http://www2.gi.alaska.edu/~bhatt/Teaching/ATM694.fall2017/class notes/21 Monsoons-1016 Dan.pdf Impact of cloud radiative heating on East Asian summer monsoon circulation http://iopscience.iop.org/1748-9326/10/7/074014/pdf/1748-9326 10 7 074014.pdf Multi-scale drought and ocean-atmosphere variability in monsoon Asia http://iopscience.iop.org/1748-9326/10/7/074010/pdf/1748-9326 10 7 074010.pdf Decoding the monsoon floods in Bangladesh, India, Myanmar and Nepal http://seedsindia.org/wp-content/uploads/2018/01/Decoding-the-monsoon-floods-report180118v-min.pdf Weather forecasting: traditional knowledge of the people of Uttarakhand Himalaya http://midimar.gov.rw/uploads/tx_download/National_Risk_Atlas_of_Rwanda_electronic_version.pdf Monsoon mission: a better way to predict Indian weather? http://www.onr.navy.mil/en/Media-Center/Press-Releases/2015/Monsoon-Research-Bay-of-Bengal.aspx Indian monsoon: novel approach allows early forecasting https://www.pik-potsdam.de/news/press-releases/indian-monsoon-novel-approach-allows-early-forecasting New soil moisture and temperature data helps predict life-threatening Indian monsoon rains https://www.purdue.edu/newsroom/releases/2019/O1/new-soil-moisture-and-temperature-data-helps-predict-lifethreatening-indian-monsoon-rains.html Scientists use underwater robots to study India's monsoon http://phys.org/news/2016-06-scientists-underwater-robots-india-monsoon.html Combined effects of recent Pacific cooling and Indian Ocean warming on the Asian monsoon http://www.nature.com/ncomms/2015/151113/ncomms9854/pdf/ncomms9854.pdf Managing the monsoon floods in Bangladesh, India, Myanmar and Nepal http://www.iwmi.cgiar.org/2016/05/managing-themonsoon/?utm content=buffercc824&utm medium=social&utm source=twitter.com&utm campaign=buffer Climate experts help communities cope with impact of the Indian Monsoon http://www.exeter.ac.uk/news/research/title 529501 en.html Changing rainfall patterns cause for worry in India http://indiaclimatedialogue.net/2018/06/25/changing-rainfall-patterns-cause-for-worry-in-india/ Researchers pinpoint abrupt onset of modern day Indian Ocean monsoon system http://www.rsmas.miami.edu/news-events/press-releases/2016/researchers-pinpoint-abrupt-onset-of-modern-dayindian-ocean-monsoon-system/ Monsoon intensity enhanced by heat captured by desert dust http://news.utexas.edu/2016/07/28/monsoon-intensity-enhanced-by-heat-captured-by-desert-dust Solar activities can affect the East Asian Winter Monsoon at the multidecadal time scale http://english.iap.cas.cn/RE/201806/t20180627 194532.html Asian monsoons and ice-age cycles http://scitation.aip.org/content/aip/magazine/physicstoday/news/10.1063/PT.5.7290?utm_source=Physics%20Tod ay&utm medium=email&utm campaign=7391253 The%20week%20in%20Physics%201-5%20August&dm i=1Y69,4EF4L,E1MUSV,G6JX6,1 Shifting monsoon altered early cultures in China http://blogs.ei.columbia.edu/2017/02/06/shifting-monsoon-altered-early-cultures-in-china-study-says/ Ice-volume-forced erosion of the Chinese Loess Plateau global quaternary stratotype site https://www.nature.com/articles/s41467-018-03329-2.pdf The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier https://www.the-cryosphere.net/6/1445/2012/tc-6-1445-2012.pdf Development of monsoonal Asia climate risk analysis maprooms

https://cgspace.cgiar.org/bitstream/handle/10568/93387/DRAFT_AsiaMaproomRiskAnalysis_WP_061818.pdf?s equence=3&isAllowed=y Bay of Bengal: from monsoons to mixing http://www.tos.org/oceanography/issue/volume-29-issue-02 Tibetan plateau gets wired up for monsoon prediction http://www.nature.com/news/tibetan-plateau-gets-wired-up-for-monsoon-prediction-1.16030 Asian monsoon much older than previously thought http://uanews.org/story/asian-monsoon-much-older-than-previously-thought Why is India's weather becoming more difficult to predict? https://www.downtoearth.org.in/news/climate-change/why-is-india-s-weather-becoming-more-difficult-topredict--63426

Incoming impacts to the Himalaya Region from nearby regions:

WMO Regional association for Asia focuses on better services and early warnings https://public.wmo.int/en/media/news/wmo-regional-association-asia-focuses-better-services-and-early-warnings Climate change will increase flow in Asia's big rivers http://www.scidev.net/south-asia/environment/news/climate-change-will-increase-flow-in-asia-s-big-rivers.html Modeling complex flow dynamics of fluvial floods exacerbated by sea-level rise in the Ganges-Brahmaputra-Meghna delta http://iopscience.iop.org/article/10.1088/1748-9326/10/12/124011/pdf Human-caused Indo-Pacific Warm Pool expansion http://advances.sciencemag.org/content/advances/2/7/e1501719.full.pdf Making the Northern Indian Ocean a hub of geomagnetic data https://eos.org/project-updates/making-the-northern-indian-ocean-a-hub-of-geomagnetic-data Impact of El Nino onset timing on the Indian Ocean: Pacific coupling and subsequent El Nino evolution http://iprc.soest.hawaii.edu/users/li/www/sooraj.kug.li.kang2008.pdf Arctic moisture source for Eurasian snow cover variations in autumn http://iopscience.iop.org/1748-9326/10/5/054015/pdf/1748-9326 10 5 054015.pdf Remote sensing data used for dzud early action in Mongolia http://www.un-spider.org/news-and-events/news/remote-sensing-data-used-dzud-early-action-mongolia Substantial glacier ice loss in Central Asia's largest mountain range http://www.gfz-potsdam.de/en/media-communication/press-releases/details/article/erheblicher-gletscherschwundin-zentralasiens-groesster-gebirgskette/ The days of plenty may soon be over in glacierized Central Asian catchments http://iopscience.iop.org/1748-9326/9/10/104018/pdf/1748-9326 9 10 104018.pdf

Glacier, ice & water dynamics within the Himalayan Mountains:

Himalayas: water towers of Asia http://www.bbc.com/future/story/20130122-himalayas-water-towers-of-asia Asia's glaciers provide buffer against drought https://www.bas.ac.uk/media-post/asias-glaciers-provide-buffer-against-drought/ The Roots of India's Water Crisis http://www.youtube.com/watch?v=x8kqq1f14vg BBC: Our World – India's water crisis http://www.youtube.com/watch?v=jscOuWpw_iU Climate change leading to water shortage in Andes, Himalayas https://news.osu.edu/climate-change-leading-to-water-shortage-in-andes-himalayas/ Pakistani Kashmir turns to water to solve power crisis http://www.youtube.com/watch?v=Rxf9MDRQZaU Glacier changes at the top of the world – over 70% of glacier volume in Everest could be lost by 2100 http://www.egu.eu/news/164/glacier-changes-at-the-top-of-the-world-over-70-of-glacier-volume-in-everestregion-could-be-lost-by-2100/ In Mount Everest region, world's highest glaciers are vanishing https://readersupportednews.org/news-section2/318-66/53672-in-mount-everest-region-worlds-highest-glaciersare-vanishing Asia's glaciers to shrink by a third by 2100, threatening water supply of millions https://www.theguardian.com/environment/2017/sep/14/asia-glaciers-shrink-threatening-water-supply Modelling glacier change in the Everest region. Nepal Himalava http://www.the-cryosphere.net/9/1105/2015/tc-9-1105-2015.pdf Glacier mass changes on the Tibetan Plateau 2003-2009 derived from ICESat laser altimetry measurements http://iopscience.iop.org/article/10.1088/1748-9326/9/1/014009/pdf Evidence of glacier retreat in the Himalayas http://zeenews.india.com/news/sci-tech/evidence-of-glacier-retreat-in-himalayas 1558782.html Tibet's glaciers at their warmest in 2000 years http://www.scientificamerican.com/article/tibet-s-glaciers-at-their-warmest-in-2-000-years/Glacier mass changes on the Tibetan Plateau 2003-2009 derived from ICESat laser altimetry measurements http://iopscience.iop.org/1748-9326/9/1/014009/pdf/1748-9326 9 1 014009.pdf Region-wide glacier mass balances over the Pamir-Karakoram-Himalava during 1999-2011 http://www.the-cryosphere.net/7/1263/2013/tc-7-1263-2013.pdf Revealing glacier flow and surge dynamics from animated satellite image sequences;: examples from Karakoram http://www.the-cryosphere.net/9/2201/2015/tc-9-2201-2015.pdf Estimating the volume of glaciers in the Himalayan-Karakorum region using different methods http://www.the-cryosphere.net/8/2313/2014/tc-8-2313-2014.pdf International team maps nearly 200,000 glaciers in guest of sea-level rise estimates http://www.colorado.edu/news/releases/2014/05/06/international-team-maps-nearly-200000-glaciers-quest-sealevel-rise Researchers resolve the Karakorum glacier anomaly, a cold case of climate science http://www.princeton.edu/main/news/archive/S41/39/84Q12/index.xml?section=topstories As mountain snow fails and glaciers melt, Pakistan faces water threats http://www.trust.org/item/20140523110407-xj352/?source=fiOtherNews2 Pakistan's glaciers: Data-sharing needed to mitigate disasters http://www.irinnews.org/report/100479/pakistan-s-glaciers-data-sharing-needed-to-mitigate-disasters Melting glaciers: Pakistan minister calls for boosting national flood-resilience http://tribune.com.pk/story/915515/melting-glaciers-minister-calls-for-boosting-national-flood-resilience/ Satellite data archives reveal unrecorded Himalayan floods https://eos.org/articles/satellite-data-archives-reveal-unrecorded-himalayanfloods?utm source=eos&utm medium=email&utm campaign=EosBuzz051118 The glaciers on Earth's 'Third Pole' are bursting, causing deadly floods https://www.vice.com/en_us/article/a3q9je/the-glaciers-on-earths-third-pole-are-bursting-causing-deadly-floods How rare are Himalayan glacial lake outburst floods? https://meetingorganizer.copernicus.org/EGU2018/EGU2018-7699.pdf Glacial lake outburst floods threaten Tibet, Nepal http://scitechconnect.elsevier.com/glacial-lake-outburst-floods-threaten-tibetnepal/?utm campaign=ELS STBK 20161028 030 EarthSci&utm campaignPK=292295961&utm term=C 201 61028 030&utm content=292285103&utm source=35&BID=884533536&utm medium=email&SIS ID=-1 Destructive glacier lake outburst flood near Almaty, Pakistan http://thewatchers.adorraeli.com/2015/07/29/destructive-glacier-lake-outburst-flood-near-almaty-pakistan/ Repeated glacial lake outburst flood threatening the oldest Buddhist monastery in north-western Nepal https://www.nat-hazards-earth-syst-sci.net/15/2425/2015/nhess-15-2425-2015.pdf Role of snow-albedo feedback in higher elevation warming over the Himalayas, Tibetan Plateau and Central Asia http://iopscience.iop.org/1748-9326/9/11/114008/pdf/1748-9326 9 11 114008.pdf

Detection of timing and duration of snowmelt in the Hindu Kush - Himalaya using QuikSCAT, 2000-2008 http://iopscience.iop.org/1748-9326/6/2/024007/pdf/1748-9326 6 2 024007.pdf Lemthang Tsho glacial Lake outburst flood (GLOF) in Bhutan: cause and impact https://geoenvironmental-disasters.springeropen.com/track/pdf/10.1186/s40677-017-0080-2 Water supplies in Tibet set to increase in the future http://www.gu.se/english/about the university/news-calendar/News detail//water-supplies-in-tibet-set-toincrease-in-the-future-.cid1349638 Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data https://www.the-cryosphere.net/7/287/2013/tc-7-287-2013.pdf Geologists contribute to new understanding of Mekong River incision https://news.svr.edu/blog/2018/10/15/su-geologists-contribute-to-new-understanding-of-mekong-river-incision/ River and coastal flooding within the Himalaya Region: It wasn't raining when Noah built the Ark: DRM to save lives and money in Asia https://wle.cgiar.org/thrive/2018/07/03/it-wasn't-raining-when-noah-built-ark-disaster-risk-management-savelives-and River management system development in Asia using data integration & analysis system (DIAS) under GEOSS http://engine.scichina.com/publisher/scp/journal/SCES/58/1/10.1007/s11430-014-5004-3?slug=full%20text UNESCAP: flood forecasting and early warning in transboundary river basins – a toolkit http://www.unescap.org/sites/default/files/Flood toolkit LowRes.pdf SANDRP: South Asian Network on Dams, Rivers and People http://sandrp.wordpress.com/ USAID Mekong ARCC climate change impact & adaptation study for the Lower Mekong Basin http://mekongarcc.net/sites/default/files/mekong arcc climate study main report-press for web.pdf The unacknowledged risk of Himalayan avalanches triggering http://link.springer.com/article/10.1007%2Fs10704-014-9939-3 Flood early warning systems in Nepal – a gendered perspective http://lib.icimod.org/record/29959/files/Flood EWS.pdf Nepal-India water negotiations http://www.negotiations.com/case/negotiation-power-asymmetry/ Timely flood warnings for downstream Nepal and India http://www.scidev.net/global/disasters/multimedia/flood-warnings-downstream-nepal-india.html Devastating floods hit India for the second year in a row https://eos.org/articles/devastating-floods-hit-india-for-the-second-vear-in-arow?utm source=eos&utm medium=email&utm campaign=EosBuzz083019 Local knowledge battles floods in India http://www.unisdr.org/archive/46163 India's most flood-prone state aided by new satellite http://news.trust.org/item/20160929104553-i2naf/ Palsar remote sensing enables accurate flood-mapping of Bihar State (India) http://floodlist.com/asia/india-palsar-remote-sensing-enables-accurate-flood-mapping-biharstate?utm source=feedburner&utm medium=feed&utm campaign=Feed%3A+Floodlist+%28Floodlist%29 Modeling flow dynamics of fluvial floods exacerbated by SLR in the Ganges-Brahmaputra-Meghna delta http://iopscience.iop.org/article/10.1088/1748-9326/10/12/124011 Controlling floods and droughts through underground storage: concept to implementation Ganges River Basin

http://www.iwmi.cgiar.org/Publications/IWMI_Research_Reports/PDF/pub165/rr165.pdf

Floods again – what can be done differently?

http://www.preventionweb.net/files/54411_54411159snetfloodsagain.pdf

Modelling spatially distributed surface runoff generation : north-west Himalayan landscape http://download.springer.com/static/pdf/954/art%253A10.1007%252Fs40808-016-0249-9.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs40808-016-0249-9&token2=exp=1486461729~acl=%2Fstatic%2Fpdf%2F954%2Fart%25253A10.1007%25252Fs40808-016-0249-9.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs40808-016-0249-9*~hmac=6ba2557bdd3dd74576a70c9dd7f4a890362f48d860d2c7ca09bb71d2c80eac41 Chennai rains: time to implement guidelines on urban coastal floods http://www.oneindia.com/feature/chennai-rains-time-to-implement-guidelines-on-urban-coastal-floods-1944845.html DRR strategies for pluvial & fluvial flood resilience in Chennai City https://www.preventionweb.net/files/66265 f334kathiravanetalclimatechangeadap.pdf Flood alert data not reaching communities http://www.myrepublica.com/portal/index.php?action=news_details&news_id=7945 Flood-proofing low income housing in India https://link.springer.com/content/pdf/10.1007%2Fs41885-018-0032-7.pdf India's cities might be expanding but are more vulnerable to natural disasters http://www.firstpost.com/living/indias-cities-might-be-expanding-but-are-more-vulnerable-to-natural-disasters-2585016.html Phutkal river blockade poses threat of disruptive floods in Jammu and Kashmir, India http://thewatchers.adorraeli.com/2015/01/27/phutkal-river-blockade-poses-threat-of-destructive-floods-in-jammuand-kashmir-india/ Kashmir flood disaster worsened by risks being ignored http://www.trust.org/item/20140911111311-blijv/ Deforestation drives worsening flooding in Kashmir http://www.trust.org/item/20150707092950-0wg5d Pakistan: floodplain management solution to devastating flood losses http://www.wwfpak.org/floodinpakistan/index.php Mountain watch groups save lives in flood-prone Pakistan valleys http://www.trust.org/item/20150310060051-zouvw/?source=spotlight Counting the cost of floods in China http://www.policyforum.net/counting-costs-floods-china/ Yangtze flood comes one month early http://news.xinhuanet.com/english/2002-05/20/content 401041.htm Chinese team says it found evidence of mythical great flood http://www.nytimes.com/aponline/2016/08/05/world/asia/ap-as-china-great-flood.html? r=0 Can 'sponge cities' solve China's urban flooding problem? http://citiscope.org/story/2016/can-sponge-cities-solve-chinas-urban-flooding-problem China's water diversion project starts to flow to Beijing http://www.theguardian.com/world/2014/dec/12/china-water-diversion-project-beijing-displaced-farmers Untapped potential: investment in China's flood defences could unleash growth http://www.scmp.com/news/china/policies-politics/article/1994204/untapped-potential-investment-chinas-flooddefences Seasonality of the hydrological cycle in the major South and Southeast Asia river basins http://www.earth-syst-dynam-discuss.net/4/627/2013/esdd-4-627-2013.pdf Agriculture and livelihood flood impact assessment in Myanmar http://www.wfp.org/sites/default/files/FSS%20Final Agriculture%20and%20Livelihood%20Flood%20Impact A ssessment Report%20Oct%202015.pdf Agriculture and livelihood flood impact assessment in Myanmar http://www.fao.org/fileadmin/user upload/emergencies/docs/Final Impact Assessment Report final.pdf Flood-induced economic loss and damage to the textile industry in Surat City, India http://pubs.iied.org/pdfs/10749IIED.pdf?

Urbanising Disaster Risk - vulnerability of the urban poor in Cambodia to flooding and other hazards http://www.preventionweb.net/files/submissions/47109 urbanisingdisasterriskreportinteractive.pdf Holistic approach to flood risk assessment in areas with cultural heritage: Avutthara, Thailand http://link.springer.com/article/10.1007/s11069-015-2098-7/fulltext.html Myanmar: post-disaster needs assessment of floods and landslides July-Sept 2015 http://wwwwds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2016/02/29/090224b0841bd783/1 0/Rendere d/PDF/Myanmar000Post0uly000September02015.pdf Successful trials of flood simulation system in Thailand http://www.nec.com/en/press/201605/global 20160523 01.html As flooding intensifies, coastal megacities in Asia turn to social media to stay afloat http://ensia.com/videos/as-flooding-intensifies-coastal-megacities-turn-to-social-media-to-stay-afloat/ Bangkok is sinking, but so are other Southeast Asian megacities https://www.global-geneva.com/bangkok-is-sinking-but-so-are-other-southeast-asian-megacities/ Myanmar seeks to break vicious circle of flood and drought http://www.ipsnews.net/2016/05/myanmar-seeks-to-break-vicious-circle-of-flood-and-drought/ Myanmar: saving the mangroves http://frontiermyanmar.net/en/saving-the-mangroves Valuing the protection services of mangroves in the Philippines http://documents.worldbank.org/curated/en/272251501076806254/pdf/117757-REVISED-Mangrove-Protection-Services-V2-0727.pdf Community mapping for DRR – harnessing local knowledge to build resilience using OSM – Philippines https://www.gfdrr.org/sites/default/files/publication/Community-Mapping-for-Disaster-Risk-Reduction-and-Management 0.pdf Impacts of SLR on economic growth in developing Asia https://www.adb.org/sites/default/files/publication/222066/ewp-507.pdf

River pollution within the Himalaya Region:

Can Modi clean the Ganges, India's biggest sewerage line? <u>http://news.yahoo.com/modi-clean-ganges-indias-biggest-sewage-line-032922309.html</u> Numerical simulation of pollution process due to resuspension of bed materials adsorbing pollutants in alluvial rivers <u>http://tech.scichina.com:8082/sciEe/EN/10.1007/s11431-015-5845-9#</u>

Freshwater issues:

Water dangers loom for South Asia

https://indiaclimatedialogue.net/2019/02/27/water-dangers-loom-for-south-asia/

The Himalayan climate and water atlas: impact of climate change on water resources in 5 of Asia's river basins <u>http://www.wmo.int/pages/prog/wcp/wcasp/meetings/documents/HKHwateratlas_FINALreduced.pdf</u>

A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau

https://www.earth-syst-dynam.net/6/109/2015/esd-6-109-2015.pdf

Blue gold from the highest plateau: Tibet's water and global climate change

http://www.savetibet.org/wp-content/uploads/2015/12/ICT-Water-Report-2015.pdf

Rising temperatures threaten stability of Tibetan alpine grassland

http://www.news.gatech.edu/2017/05/10/rising-temperatures-threaten-stability-tibetan-alpine-grasslands

Reviving Himalayan springs essential for climate adaptation

https://indiaclimatedialogue.net/2018/07/30/reviving-himalayan-springs-essential-for-climate-adaptation/ Drinking water security in South Asia – scaling for India's Swatchcha Bharat Abhiyan (Clean India Drive) http://www.preventionweb.net/files/46371_46371drinkingwatersecurityinsouthas.pdf

Water problems in Asia's future? http://news.mit.edu/2016/water-problems-asia-0330 Drones, satellites to monitor water sources along Yangtze http://news.xinhuanet.com/english/2016-05/27/c 135393939.htm Climate-resilient water management: an operational framework for South Asia http://www.acclimatise.uk.com/wp-content/uploads/2018/02/OPM WaterManagement Pr4Final WEB.pdf Forecasting India's water future https://eos.org/project-updates/forecasting-indias-water-future Water: the precarious situation of India's water problem http://economictimes.indiatimes.com/news/politics-and-nation/the-precarious-situation-of-indias-waterproblem/articleshow/57965416.cms Towards drought free India http://www.preventionweb.net/files/49968 49968147snettowardsdroughtfreeindia.pdf Can participatory groundwater management enhance groundwater resilience? http://documents.worldbank.org/curated/en/479511579804284753/pdf/Can-Participatory-Groundwater-Management-Enhance-Drought-Resilience-The-Case-of-the-Andhra-Pradesh-Farmer-Managed-Groundwater-Systems-Project.pdf Invisible water, visible impact: groundwater use and Indian agriculture under climate change http://iopscience.iop.org/article/10.1088/1748-9326/11/8/084005/pdf Economic survey identifies water scarcity is Pakistan's biggest challenge https://dailytimes.com.pk/237012/economic-survey-identifies-water-scarcity-is-pakistans-biggest-challenge/ How toxic water destroyed Pakistan's largest lake https://www.youtube.com/watch?v=nm4CgDyJ4ak The future of the Aral Sea lies in transboundary cooperation http://apps.unep.org/publications/pmtdocuments/GEAS Jan2014 Aral Sea.pdf

Hydroelectric dam issues within the Himalaya Region:

Hydropower plants blamed for deadly floods in India

http://in.reuters.com/article/2014/04/29/uk-india-flood-idINKBN0DF10F20140429

Uttarakhand's furious Himalayan flood could bury India's hydropower program

http://www.circleofblue.org/waternews/2014/world/uttarakhands-furious-himalayan-flood-bury-indiashydropower-program/

India's PM in Nepal for hydropower talks

http://www.aljazeera.com/news/asia/2014/08/india-pm-nepal-hydropower-talks-20148354336374568.html

China hydropower dams in Mekong River give shocks to 60 million

http://www.bloomberg.com/news/articles/2010-10-26/china-hydropower-dams-in-mekong-river-give-shocks-to-60-million

Hydropower in the Himalayan hazardscape: strategic ignorance and the production of unequal risk <u>https://www.mdpi.com/2073-4441/11/3/414</u>

Hydropower in Cambodia could threaten food security of region

http://news.aces.illinois.edu/news/hydropower-cambodia-could-threaten-food-security-region

Global surveys of reservoirs and lakes from satellites; regional application to the Syradarya River Basin <u>http://iopscience.iop.org/1748-9326/10/1/015002/pdf/1748-9326_10_1_015002.pdf</u>

Ten years of the Three Gorges Dam: a call for policy overhaul

http://iopscience.iop.org/1748-9326/8/4/041006/pdf/1748-9326_8_4_041006.pdf

A successful case of emergency landslide response – the Sept 2, 2014, Shanshucao, Three Gorges Reservoir <u>http://www.geoenvironmental-disasters.com/content/pdf/s40677-015-0026-5.pdf</u>

China begins construction of 'world's tallest' dam

http://news.yahoo.com/china-begins-construction-worlds-tallest-dam-103448199.html Largest dam in the world https://www.youtube.com/watch?v=b&cCsUBYSkw Improving the seismic resilience of dams in India http://www.worldbank.org/en/news/feature/2017/09/05/improving-the-seismic-resilience-of-dams-in-India-a-Case-of-maithon-dam-jharkhand-state Dam-triggered organic carbon sequestration makes the Yangtze River basin a significant carbon sink http://onlinelibrary.wiley.com/doi/10.1002/2014JG002646/full;jsessionid=C840F98BAE259FC9AA9D29DBE7F 71332.f03t01?wol1URL=/doi/10.1002/2014JG002646/full®ionCode=AU-VIC&identityKey=f4b29382-5340-4f69-8157-3a9292785554&isReportingDone=true

Other power issues within the Himalaya Region:

Parched power: water demands, risks, and opportunities for India's power sector <u>https://www.wri.org/publication/parched-power</u> India: more water shortages mean energy investors need new ways to manage drought risk <u>https://www.wri.org/blog/2019/10/more-water-shortages-mean-energy-investors-need-new-ways-manage-</u>

<u>drought-</u> <u>risk?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+WRI_News_and_Views+%28WR</u>

I+Insights+Blog%2C+News%2C+and+Publications+%7C+World+Resources+Institute%29

Air pollution within the Himalayan Region:

India's next urban disaster: air pollution? http://www.aidmi.org/~/sub-images/reports/Indias%20Next%20Urban%20Disaster Air%20Pollution.pdf Cities in India among the most polluted, W.H.O.says http://cn.nytimes.com/world/20140509/c09india/en-us/ New study uncovers the underlying causes of Delhis's air pollution http://phys.org/news/2015-10-uncovers-underlying-delhi-air-pollution.html Black carbon aerosols over Manora Peak in the Himalayan foothills: implications for climate forcing http://iopscience.iop.org/1748-9326/7/1/014002/pdf/1748-9326 7 1 014002.pdf Air pollution co-benefits of low carbon policies in road transport: a sub-national assessment for India http://iopscience.iop.org/1748-9326/10/8/085006/pdf/1748-9326 10 8 085006.pdf Clean air halves health costs in Chinese cities http://www.mailman.columbia.edu/news/clean-air-halves-health-costs-chinese-city Impact of aerosol-meteorology interactions on fine particle pollution during China's severe haze episode http://iopscience.iop.org/1748-9326/9/9/094002/pdf/1748-9326 9 9 094002.pdf Source attribution of particulate matter pollution over North China with the adjoint method http://jopscience.jop.org/1748-9326/10/8/084011/pdf/1748-9326_10_8_084011.pdf Study reveals surprising role of haze in the warming of Chinese cities http://environment.yale.edu/news/article/yale-study-reveals-surprising-role-of-haze-in-warming-of-china-cities/ China's severe winter haze tied to climate change http://www.news.gatech.edu/2017/03/15/chinas-severe-winter-haze-tied-climate-change Playing 'tag' with pollution lets scientists see who's it http://www.pnnl.gov/news/release.aspx?id=4215 The days of plenty may soon be over in glacierized Central Asian catchments http://iopscience.iop.org/1748-9326/9/10/104018/pdf/1748-9326 9 10 104018.pdf Frequent interactions of Tibet's CO2 emissions with those of other regions in China https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2018EF001059

Fire, forests & fire management in the Himalaya Region

Forests and fire: strengthening prevention and management in India http://documents.worldbank.org/curated/en/333281529301442991/pdf/Forest-Fire-Prevention-and-Management.pdf Contribution of vegetation and peat fires to particulate air pollution in Southeast Asia http://iopscience.iop.org/1748-9326/9/9/094006/pdf/1748-9326 9 9 094006.pdf Fire emissions and regional air quality impacts from fires in oil palm, timber and logging concessions in Indonesia http://iopscience.iop.org/1748-9326/10/8/085005/pdf/1748-9326 10 8 085005.pdf Peat fires in Sumatra strengthen El Nino years http://www.nasa.gov/image-feature/peat-fires-in-sumatra-strengthen-in-el-nino-years Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia http://iopscience.iop.org/article/10.1088/1748-9326/10/10/105003/pdf Understanding the Southeast Asia haze http://iopscience.iop.org/article/10.1088/1748-9326/aa75d5/pdf Toward a fire and haze early warning system for Southeast Asia http://www.apn-gcr.org/resources/files/original/d9c0aea5bb3cc496e4c8a86624f9554e.pdf Indonesian fires exposed 69 million to 'killer haze' http://www.ncl.ac.uk/press/news/2016/11/wildfires/ Indonesia's new ally on war against haze http://news.trust.org/item/20170322104956-a6oi8/ Indonesians hope 'milestone' ruling will dampen haze-fire risks http://news.trust.org/item/20190723101017-npe1m/

The impact of climate change on the cities, towns and villages in the Himalaya Region:

Climate change impacts on socioeconomic damages from weather related events in China https://link.springer.com/content/pdf/10.1007%2Fs11069-019-03588-2.pdf India, neighbours most vulnerable to climate change https://indiaclimatedialogue.net/2018/12/05/extreme-weather-increases-indias-vulnerability-to-climate-change/ Evidence, urbanization and ecosystem services in Asia https://www.acccrn.net/blog/evidence-urbanisation-and-ecosystems-services-asia Mapping multiple climate-related hazards in South Asia http://www.iwmi.cgiar.org/Publications/IWMI Research Reports/PDF/pub170/rr170.pdf Assessing the climate change environmental degradation and migration nexus in South Asia https://publications.iom.int/system/files/pdf/environmental degradation nexus in south asia.pdf Multiple climate hazards hitting India together https://indiaclimatedialogue.net/2018/11/19/multiple-climate-hazards-hitting-india-together/ Climate change in the Himalayas http://www.preventionweb.net/files/submissions/39439 118snetclimatechangesikkim.pdf Enhancing urban climate change resilience: seven entry points for action https://www.adb.org/sites/default/files/publication/213291/sdwp-047.pdf Towards climate compatible development in India http://www.preventionweb.net/files/43186_43186123towardsclimatecompatibledev.pdf South Asia's hotspots: the impact of temperature and precipitation changes on living standards https://openknowledge.worldbank.org/bitstream/handle/10986/28723/9781464811555.pdf?sequence=5&isAllowe d=v Climate resilient DRR: - handbook for Indian District Collectors http://www.preventionweb.net/files/submissions/51388 dchanbook.pdf

21C climatic and hydrological changes over Upper Indus Basin of Himalayan region of Pakistan http://iopscience.iop.org/1748-9326/10/1/014007 Addressing climate risks in Sri Lanka http://wcdrrbag.info/Undocuments/BySession/Addressing Climate Risks in Sri Lanka.pdf Pakistan pushes climate change back up political agenda http://www.trust.org/item/20150121094031-o2hxf/?source=dpagetopic The road to climate resilience in Pakistan: migration as an adaptation strategy http://prise.odi.org/wp-content/uploads/2018/04/Policy-Brief-23-April-2018-Low-Resolution.pdf Decline of Bronze Age 'megacities' linked to climate change http://www.cam.ac.uk/research/news/decline-of-bronze-age-megacities-linked-to-climate-change Cooperation for water, energy and food security in transboundary basins under changing climate http://www.mrcmekong.org/assets/Publications/conference/MRC-intl-conf-publ-2014.pdf India's brave new urban world http://www.unisdr.org/archive/37447 India and China back new climate adaptation alliance http://www.rtcc.org/2014/06/27/india-and-china-back-new-climate-adaptation-alliance/ Impacts of human activity and climate change on the water environment of Lake Poyang Basin, China http://www.geoenvironmental-disasters.com/content/pdf/s40677-015-0029-2.pdf Impacts of climate change on regional hydrological regimes of the Wujiang River watershed, Southwest China http://www.geoenvironmental-disasters.com/content/pdf/s40677-015-0013-x.pdf Spatial and temporal variations of extreme precipitation and temperature events for Southwest China 1960-2009 http://www.geoenvironmental-disasters.com/content/pdf/s40677-015-0014-9.pdf 8.000-year-old mutation key to human life at high altitudes http://healthcare.utah.edu/publicaffairs/news/current/08-17-2014-Tibetan-High-Altitude-Prchal.php Assessing the cost of climate change and adaptation in South Asia http://www.preventionweb.net/files/38999 assessingcostsclimatechangeandadapt.pdf Strengthening cooperation in adaptation to climate change in transboundary basins of the Chu and Talas rivers http://www.zoinet.org/web/sites/default/files/publications/chu talas.pdf Climate change is making calendars run amok in the Pamir Mountains of Central Asia http://news.nationalgeographic.com/2016/06/towns-changing-clocks-time-climate-change-pamirscience/?utm source=NatGeocom&utm medium=Email&utm content=wild science 20160709&utm campaign =Content&utm rd=762059832 Dzuds, droughts, and livestock mortality in Mongolia http://iopscience.iop.org/1748-9326/10/7/074012/pdf/1748-9326 10 7 074012.pdf Grant signed to improve disaster resilience for herders in Mongolia https://www.adb.org/news/grant-signed-improve-disaster-resilience-herdersmongolia?utm source=feedburner&utm medium=feed&utm campaign=Feed%3A+adb news+%28ADB.org+N ews+Releases+RSS%29 Climate risk profile – Central Asia https://www.climatelinks.org/sites/default/files/asset/document/2018-April-30 USAID CadmusCISF Climate-Risk-Profile-Central-Asia.pdf How can climate change vulnerability assessments best impact policy and planning: Indonesia http://pubs.iied.org/pdfs/10743IIED.pdf ADB to double annual climate financing to \$6B for Asia Pacific by 2020 http://www.adb.org/news/adb-double-annual-climate-financing-6-billion-asia-pacific-2020?utm source=news&utm medium=email&utm campaign=alerts Climate change risk assessment & adaptation for loss & damage of urban transportation infrastructure in SE Asia http://www.apn-gcr.org/resources/files/original/390875e769c0ff1e752f28e26d4f5226.pdf Constraints to the capacity of smallholder farming to adapt to climate change in South and SE Asia https://www.tandfonline.com/doi/full/10.1080/17565529.2018.1442798?scroll=top&needAccess=true& How do two types of drought evolve across China? http://english.iap.cas.cn/RE/201810/t20181012 198187.html

Strengthening community resilience in South Asia http://blogs.worldbank.org/endpovertyinsouthasia/strengthening-community-resilience-south-asia Rethinking resilience – social protection in the context of climate change in Vietnam http://careclimatechange.org/wp-content/uploads/2015/09/Learning-Series-2-Rethinking-Resilience-EN-2015 09 21.pdf Climate resilience and the role of the private sector in Thailand http://www.bsr.org/reports/BSR Climate Resilience Role Private Sector Thailand 2015.pdf Myanmar: Building back better – good practice guidance for the private sector in recovery activities http://www.themimu.info/sites/themimu.info/files/documents/Guidance for the Private Sector in Recovery Ac tivities MIMU 02Sep2015.pdf Improving resilience to severe weather and climate change in the Philippines http://www.metoffice.gov.uk/binaries/content/assets/mohippo/pdf/international/17 0015pagasa case study final.pdf Vietnam: Peace of mind in the path of storms https://medium.com/@UNDP/peace-of-mind-in-the-path-of-storms-178123c1d3aa Dalai Lama says climate change destroying Tibet's 'roof of the world' http://www.trust.org/item/20151020063929-etwma/ World bank and Tajikistan to strengthen country's climate resilience http://www.worldbank.org/en/news/press-release/2016/02/12/world-bank-and-tajikistan-to-strengthen-countrysclimate-resilience Gender and social vulnerability to climate change: a study of disaster prone areas in Sindh http://spdc.org.pk/Data/Publication/PDF/Final%20Consolidated%20Report%2004-03-15.pdf Building resilience for all: lessons from Assam for Asia http://www.alnap.org/node/24079.aspx Towards climate resilience in agriculture for Southeast Asia: an overview for decision makers https://cgspace.cgiar.org/handle/10568/71100 Adapting to climate change to save Mongolia's ancient herding culture http://www.ifrc.org/en/news-and-media/news-stories/asia-pacific/mongolia/adapting-to-climate-change-to-savemongolias-ancient-herding-culture-72460/ Influencing adaptation policy: the role of policy entrepreneurs in securing ownership and climate action in S Asia https://www.preventionweb.net/files/62987 actinfluencingpaperweb1.pdf Drought and heat waves in the Himalaya Region Understanding droughts in India http://www.preventionweb.net/files/submissions/43468 127understandingdrought.pdf Drought proofing strategies by farmers in Southern India http://www.iwmi.cgiar.org/iwmi-tata/PDFs/iwmi-tata water policy research highlight-issue 04 2017.pdf India's next weapon against climate change? The heat-tolerant dwarf cow http://www.trust.org/item/20150629103413-6wdhs/ Real time extended range prediction of heat waves over India

https://www.nature.com/articles/s41598-019-45430-6.pdf

Simulations confirm observations of 2015 India/Pakistan heat waves

https://cs.lbl.gov/news-media/news/2016/simulations-confirm-observations-on-2015-indiapakistan-heat-waves/ India – the race against heat

https://www.theverge.com/2017/9/14/16290934/india-air-conditioner-cooler-design-climate-change-cept-symphony

India needs heat action plans everywhere

https://indiaclimatedialogue.net/2019/05/03/preparing-for-lethal-indian-summers/

India sees sharp fall in heat wave deaths

https://edition.cnn.com/2018/06/21/health/india-heat-wave-deaths-decline-intl/index.html

The India Cooling Action Plan is inadequate: heat is an invisible climate risk https://www.livemint.com/Opinion/Fk9c9QV0eQr57a06QQBWtJ/Opinion--Heat-is-an-invisible-climaterisk.html Over 6,100 deaths caused by heat wave in nine years to 2018, Andra Pradesh faced max. casualities https://timesofindia.indiatimes.com/india/over-6100-deaths-caused-by-heat-wave-in-nine-years-till-2018-andhrapradesh-faced-max-casualties/articleshow/67354448.cms Odisha readies pioneering plan to combat deadly heat http://news.trust.org/item/20160405061820-tfmu8/ Expanding heat resilient cities across India http://www.nrdc.org/international/india/extreme-heat-preparedness/files/india-heat-reslient-cities-IB.pdf In India, summer heat may soon be literally unbearable https://www.nytimes.com/2018/07/17/climate/india-heat-wave-summer.html

Desertification in the Himalaya Region:

Farming is driving force in drying soil in Northern China http://www.purdue.edu/newsroom/releases/2015/O3/soil-in-northern-china-is-drving-out-and-farming.-notclimate-change,-is-culprit.html Agriculture intensifies soil moisture decline in Northern China http://www.nature.com/srep/2015/150709/srep11261/pdf/srep11261.pdf A new perspective in understanding the reduced spring dust storm frequency in Inner Mongolia, China http://download.springer.com/static/pdf/515/art%253A10.1007%252Fs13753-015-0062-5.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs13753-015-0062-5&token2=exp=1446007040~acl=%2Fstatic%2Fpdf%2F515%2Fart%25253A10.1007%25252Fs13753-015-0062-5.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs13753-015-0062-5*~hmac=91bd1e42be3b037df838f49d5e1ce4f4d13f866557cd7fb72b01e1a04121ba61 Work on barren soil may bear fruit http://www-public.jcu.edu.au/news/JCU 149361 How wind sculpted the Earth's largest dust deposit http://uanews.org/story/how-wind-sculpted-earth-s-largest-dust-deposit Last chance for oasis in China's desert http://www.tum.de/en/about-tum/news/press-releases/short/article/32595/ Rural livelihood vulnerability in semi-arid Pakistan: scope of migration as an adaptation strategy

http://prise.odi.org/wp-content/uploads/2018/04/Final-Report Final 27 April -2018 Low Resolution.pdf

Climate variability and water resource scarcity in drylands of Rajasthan, India

http://www.geoenvironmental-disasters.com/content/pdf/s40677-015-0018-5.pdf

Assessing climate change risks and contextual vulnerability in urban areas of semi-arid India http://www.assar.uct.ac.za/sites/default/files/image_tool/images/138/Info_briefs/Contextual%20vulnerability%20

in%20Bangalore%20-%20CARIAA%20ASSAR%20Working%20Paper%203.pdf

The impact of East Asian dust deposition on marine biological productivity

http://english.iap.cas.cn/RE/201612/t20161201_171523.html

'Green Gold': Pakistan plants hundreds of millions of trees https://www.aljazeera.com/news/2018/06/gold-pakistan-plants-hundreds-millions-trees-180626095806407.html

The emergence and design of smart cities in the Himalaya Region:

Isro satellites to map 500 AMRUT cities http://www.livemint.com/Politics/PwxGJGSriAoDGdP6nBGd0J/Isro-satellites-to-map-500-AMRUT-cities.html An urgent case for higher resolution digital elevation models in the world's poorest and most vulnerable countries http://journal.frontiersin.org/article/10.3389/feart.2015.00050/full India: building resilience locally https://www.devex.com/news/the-next-generation-city-resilient-smart-and-sustainable-87412 Cool roofs: protecting local communities and saving energy https://assets.nrdc.org/sites/default/files/ib - cool roofs hyd workshop.pdf? ga=2.95997468.1489606253.1525717407-521766524.1516923806 Seismic design in Pakistan: the building codes, bylaws and recommendations for earthquake risk reduction http://www.pk.undp.org/content/dam/pakistan/docs/CPRU/Disaster%20Risk%20Management/Earthquake.pdf Geospatial tech is driving digital transformation in India http://epaper.livemint.com/epaper/iphone/homepage.aspx# article18be4353-ba59-4185-ba8a-31784e8752a7 Resource requirements of inclusive urban development in India: insights from 10 cities http://iopscience.iop.org/article/10.1088/1748-9326/aaa4fc/pdf The role of waterways in promoting urban resilience: the case of Kochi City (India) http://icrier.org/pdf/Working Paper 359.pdf Building resilient cities: an assessment of DRM policies in SE Asia https://www.oecd-ilibrary.org/urban-rural-and-regional-development/building-resilient-cities 9789264305397-en

Sustainability & Ecological issues in the Himalaya Region:

The Hindu Kush Himalaya Assessment – mountains, climate change, sustainability and people http://lib.icimod.org/record/34383/files/icimod2019 Book TheHinduKushHimalayaAssessment.pdf Implementing the SDGs in the Hindu Kush Himalayas http://lib.icimod.org/record/31940/files/EB01-M16.pdf Impacts of conservation and human development policy across stakeholders and scales http://www.pnas.org/content/112/24/7396.full.pdf Resilient mountain villages http://lib.icimod.org/record/32371/files/icimodRMV.pdf Tibet's fragile ecosystem is in danger http://tibet.net/2017/08/tibets-fragile-ecosystem-is-in-danger-china-must-change-its-flawed-environmentalpolicy/?utm source=iNews-Readers&utm medium=email&utm campaign=SNS+iNews+Highlights+for+August+7+2017 http://lib.icimod.org/record/32309/files/RMV.pdf Integration of DRR and climate change adaption for sustainable development http://www.preventionweb.net/files/51048 51034policybriefdrrandcca.pdf Smallholder farming systems in the Indian Himalayas http://pubs.iied.org/pdfs/17618IIED.pdf Transforming Chennai – building micro, small and medium enterprise resilience to water-related change http://www.seepnetwork.org/filebin/images/initiatives/drr/Transforming Chennai Okapi Mercy Corps.pdf Costs and benefits of ecosystem based adaptation: the case of the Philippines https://portals.iucn.org/library/sites/library/files/documents/2016-009.pdf Strengthening science capacities, DRR, Climate Change Adaptation and Sustainable Development http://www.irdrinternational.org/2017/01/20/a-new-publication-focused-on-dbar-drr-strengthening-sciencecapacities-for-sustainable-development-and-disaster-risk-reduction-regional-research-strategy/ Building resilient communities – linking climate change and DRR in action plans http://www.preventionweb.net/files/submissions/51729 154snetbuildingresilientcommunities.pdf

Land cover monitoring for resilient development <u>https://servir.adpc.net/news/land-cover-monitoring-resilient-</u> <u>development?utm_content=buffer20d7f&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer</u> Thailand Country Report: Pakamas Thinphanga Thailand Environmental Institute <u>https://www.acccrn.net/sites/default/files/publication/attach/thailand_paper_rev2.pdf</u> Mongolia brings disaster risk center stage <u>https://www.unisdr.org/archive/59043</u>

Fiscal and economic risks for countries in the Himalaya Region:

Promoting disaster risk financing in Asia and the Pacific https://www.adb.org/sites/default/files/publication/227516/adbi-pb2017-1.pdf Natural disaster shocks and macroeconomic growth in Asia: evidence for typhoons and droughts https://www.adb.org/sites/default/files/publication/218461/ewp-503.pdf Assessing India's mounting climate losses to financial institutions https://www.preventionweb.net/files/63222_20190122abifannualweatherclimaterep.pdf Fiscal disaster risk assessment – options for consideration: Pakistan http://wwwwds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2015/04/17/000442464_20150417121557/Re ndered/PDF/944740WP0P13260ter0Risk0Assessment.pdf

Can traditional livelihoods and mining co-exist in a changing climate: Mongolia <u>http://www.apn-gcr.org/resources/files/original/a6c9c57bd89c9e8a3dc5d0f0f963c03e.pdf</u>

Trans-boundary political dynamics of the Region:

The Silent War made by India in Bangladesh http://www.youtube.com/watch?v=jYYxCwk8thU Climate change as a driver of conflict in Afghanistan and other fragile and conflict affected states https://opendocs.ids.ac.uk/opendocs/bitstream/handle/20.500.12413/14424/527 Climate%20change%20as%20a %20driver%20of%20conflict%20in%20Afghanistan%20and%20other%20FCAS.pdf?sequence=1&isAllowed=v India woos neighbours as rifts open doors to China http://tribune.com.pk/story/798634/india-woos-neighbours-as-rifts-open-door-to-china/ What China has been building in the South China Sea http://www.nytimes.com/interactive/2015/07/30/world/asia/what-china-has-been-building-in-the-south-chinasea.html?hp&action=click&pgtype=Homepage&module=photo-spot-region®ion=top-news&WT.nav=topnews A critical disconnect: the role of SAARC in building the DRM capacities of South Asian countries http://www.brookings.edu/~/media/research/files/papers/2015/05/05-south-asia-distasters-white/role-of-saarc-indrm-south-asia-may-5-2015.pdf Water, ecosystems and energy in South Asia: making cross-border collaboration work https://www.chathamhouse.org/sites/files/chathamhouse/publications/research/2016-06-30-water-south-asiaprice-mittra.pdf Built on sand: Singapore and the new state of risk http://www.harvarddesignmagazine.org/issues/39/built-on-sand-singapore-and-the-new-state-of-risk Tools for culture design: toward a science of social change http://www.spanda.org/SpandaJounrnal VI,1.pdf Resilient rice http://www.povertyactionlab.org/publication/resilient-rice The impact of climate change policy on the risk of water stress in southern and eastern Asia http://iopscience.iop.org/article/10.1088/1748-9326/aaca9e/pdf The future of the Aral Sea lies in transboundary cooperation http://apps.unep.org/publications/pmtdocuments/GEAS Jan2014 Aral Sea.pdf

Migration and displacement:

As climate impacts hit, Pakistan faces migration surge http://www.trust.org/item/20151126065140-syubv/ Environmental migration and displacement in Azerbaijan https://publications.iom.int/system/files/pdf/policy_brief_vol2_issue4_en.pdf Tackling poverty and food security: lessons from India's peri-urban frontier http://pubs.iied.org/pdfs/10810IIED.pdf Extreme weather and disaster preparedness in the Rohingya refugee response http://www.bd.undp.org/content/bangladesh/en/home/library/crisis_prevention_and_recovery/extreme-weatherand-disaster-preparedness-in-the-rohingya-refuge.html

Himalayan Wildlife & Pests:

Bird species-richness pattern in the greater Himalayan mountains http://www.aoucospubs.org/doi/pdf/10.1525/om.2011.70.1.1 Avifauna of the Eastern Himalayas and Southeastern Sub-Himalayan mountains http://www.aoucospubs.org/doi/book/10.1525/aoum.70 East Himalaya surveys yield more than 200 new species http://www.upi.com/Science_News/2015/10/08/WWF-East-Himalaya-surveys-yield-more-than-200-newspecies/1141444340313/ Protecting forests in India from disastrous fires http://blogs.worldbank.org/endpovertyinsouthasia/protecting-forests-india-disastrous-fires Fall Armyworm likely to spread from India to other parts of Asia with SE Asia and South China most at risk http://www.fao.org/news/story/en/item/1148819/icode/

General articles concerning disaster risk management in the Himalaya Region:

Satellite remote sensing for disaster management support: a holistic and staged approach based on Sentinel Asia https://reader.elsevier.com/reader/sd/pii/S2212420918304801?token=8F0141F428315DB5C82630C0F9EA8E7C 2DE38B1D588F12EC23CF3CC559CA44E250A864FCA1EB382DC10FB50485F1EEEF Literature review of critical climate-stress moments in the Hindu Kush Himalaya - a resource kit http://lib.icimod.org/record/33837/files/HI-AWARE-Resource%20Kit.pdf Adaptation in the Himalayas: knowledge, action & results https://gridarendal-websitelive.s3.amazonaws.com/production/documents/:s_document/391/original/HICAPimpact_screen.pdf?1523004606 Building resilience in Southeast Asia https://www.gfdrr.org/sites/default/files/publication/SEA%20DRM%20v3.pdf Asia Pacific: better risk management can reduce disaster displacement https://www.preventionweb.net/news/view/59039?&a=email&utm_source=pw_email Identification and analysis of uncertainty in DRR and climate change adaptation in South & Southeast Asia https://www.researchgate.net/publication/297676681 Identification and analysis of uncertainty in disaster ris k reduction and climate change adaptation in South and Southeast Asia ICSU science & technology plan for DRR – Asia and Pacific perspectives http://www.irdrinternational.org/2017/03/01/icsu-roap-and-irdr-published-science-technology-plan-for-disasterrisk-reduction-asian-and-pacific-perspectives/ The destructive power of volcanic ash fall http://www.preventionweb.net/files/submissions/52503 zrh1610205p1volcanopublication.pdf Addressing climate change risks, disasters, and adaptation in the PRC http://www.adb.org/sites/default/files/publication/177728/climate-change-risks-prc.pdf Strengthening social protection systems to manage disaster and climate risks in Asia and Pacific https://openknowledge.worldbank.org/bitstream/handle/10986/22976/Strengthening000in0Asia0and0Pacific.pdf Building preparedness for hydro-meteorological, seismic and landslide hazards in South and Southeast Asia http://www.adpc.net/igo/contents/Media/media-news.asp?pid=990&Topic=#sthash.3Am04Bfj.KcWSJTZe.dpbs Guidance on spatial technologies for disaster risk management in aquaculture http://www.fao.org/3/CA2240EN/ca2240en.pdf Bangkok to Sendai and beyond: implications for DRR in Asia http://download.springer.com/static/pdf/424/art%253A10.1007%252Fs13753-015-0055-4.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs13753-015-0055-4&token2=exp=1446326373~acl=%2Fstatic%2Fpdf%2F424%2Fart%25253A10.1007%25252Fs13753-015-0055-4.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs13753-015-0055-4*~hmac=54ae8165b8d8269c8d115751cab027dbf33574be5128c18ce0fe215007272c86

A non-monetary global measure of the direct impact of natural disasters http://researcharchive.vuw.ac.nz/bitstream/handle/10063/4193/Working%20paper.pdf Inclusive Disaster Risk Management http://www.preventionweb.net/files/42624_42624incrisdframeworktoolkit1.pdf Impacts of natural disasters on households and small businesses in India https://www.adb.org/sites/default/files/publication/547031/ewp-603-disasters-households-small-businessesindia.pdf Building resilience through DRR: an assessment of India's microfinance sector http://www.seepnetwork.org/filebin/images/new/DRR Diagnostic IFMR LEAD 7F lr.pdf Strengthening DRM in India: a review of 5 state DRM plans http://cdkn.org/wp-content/uploads/2016/07/India-disaster-management-web.pdf Slum upgrades key to disaster mitigation in Indian cities http://news.trust.org/item/20170821110111-8tdzw/ Rethinking post-disaster relocation in urban India http://pubs.iied.org/pdfs/17430IIED.pdf Isro-NASA satellite to help India 'predict' landslides http://timesofindia.indiatimes.com/home/science/indo-us-satellite-to-help-predictlandslides/articleshow/60150319.cms Mapping multiple climate-related hazards in South Asia http://www.iwmi.cgiar.org/Publications/IWMI Research Reports/PDF/pub170/rr170.pdf Breaking silos in disaster management https://www.downtoearth.org.in/blog/agriculture/breaking-silos-in-disaster-management-66711 Tackling disasters: Indian coastal hazard maps under way http://www.thehindubusinessline.com/news/national/tackling-disasters-coastal-hazard-maps-underway/article9471603.ece Heatwave and lightning alerts and public awareness campaign for India https://ndma.gov.in/en/news/1840-press-release-heat-wave-and-lightning-ndma-reviews-preparedness-ofstates.html The role of the microfinance sector in DRR in India http://www.seepnetwork.org/filebin/pdf/drr/ExecutiveSummaryDRRrv F11x17.pdf India's ISRO disseminating early warning for cyclones, floods, rain, landslides, and other natural calamities http://www.ibtimes.co.in/this-how-isro-will-provide-early-warnings-cyclones-floods-rain-landslides-othernatural-720417 Afghanistan – disaster risk profile http://www.preventionweb.net/files/52177 afghanistanlow.pdf Gender, climate change and DRR and recovery strategy – Asia Pacific http://www.unwomen.org/~/media/headquarters/attachments/sections/news/stories/2015/gender-ccdrr%20asiapacific%20strategy-final%20unw%20%28002%29.pdf?v=1&d=20150911T140953 Urban DRR framework – assessing urban resilience of World Vision project sites http://www.preventionweb.net/files/42642 42642urbandrrframework1.pdf Climate change and disasters in the Hindu Kush Himalayan Region http://www.preventionweb.net/files/17142 17142climatechangeanddisastersinthe.pdf Natural disasters cost India \$3.3bn in 2015: her's why we should be very worried http://www.firstpost.com/india/natural-disasters-cost-india-3-30bn-in-2015-heres-why-we-should-be-veryworried-2622940.html Lessons for disaster resilient construction in Odisha, India http://www.in.undp.org/content/dam/india/docs/CPR/drr-shelter-report.pdf Fixing the cracks in the Himalayas to avert another Kashmir-like tragedy http://articles.economictimes.indiatimes.com/2014-09-16/news/53983318 1 ecosystem-himalayas-services Managing risk and building resilience in humanitarian action in India http://www.preventionweb.net/files/43467 managingriskandbuildingresiliencein.pdf

Building Afghanistan's resilience: natural hazards, climate change and humanitarian needs http://postconflict.unep.ch/publications/Afghanistan/UNEP AFG Brussels conference 2016.pdf Natural hazards: 1.4bn people face severe risks in South Asia, as region struggles to build resilience http://maplecroft.com/portfolio/new-analysis/2016/03/23/natural-hazards-14bn-people-face-severe-risks-southasia-region-struggles-build-resilience/ India-Russia coordinated action on DRR http://aidmi.org/sub-images/reports/India-Russia%20Coordinated%20Action%20on%20DRR.pdf Strengthening climate resilience: approach in Andhra Pradesh and Tamil Nadu in India http://nidm.gov.in/PDF/pubs/Strengthening%20Climate.pdf Risk sensitive heritage conservation in Sikkim http://www.preventionweb.net/files/39369 39369117snetrisksensitiveheritatesi.pdf A selected annotated bibliography and bibliography on landslides on India http://nidm.gov.in/PDF/pubs/bibliography%20landslide.pdf DRR in hilly regions - challenges in Sikkim and other hilly states http://www.preventionweb.net/files/38982_38982115snetdrrinhillvareassikkim1.pdf Landslide risks rise up agenda http://www.nature.com/news/landslide-risks-rise-up-agenda-1.15556 Indian national agenda for landslide disaster mitigation: challenges and mitigation http://www.currentscience.ac.in/Volumes/109/05/0845.pdf Thinking ahead of disaster http://www.ekantipur.com/2014/08/12/development/thinking-ahead-of-disaster/393455.html India: towards urban resilience http://www.preventionweb.net/files/38955 38955114sneturbanresilience1.pdf Opportunities to address the emergent disaster risk landscape in urban India http://pubs.iied.org/pdfs/10726IIED.pdf? Paribartan: resilience in the Bay of Bengal https://doj19z5hov92o.cloudfront.net/sites/default/files/media/resource/paribartan_photobook resilience in the bay of bengal 1.pdf ESCAP-India partnership to strengthen disaster early warning systems in the Asia-Pacific http://www.unescap.org/news/escap-india-partnership-strengthen-disaster-early-warning-systems-asia-pacific Strategies and lessons for preparing better and strengthening risk resilience in coastal regions of India http://ndma.gov.in/images/pdf/Hudhud-lessons.pdf ENSO as an early warning tool for malaria outbreaks in India https://malariajournal.biomedcentral.com/track/pdf/10.1186/s12936-017-1779v?site=malariajournal.biomedcentral.com India to soon begin to forecasting reach of tsunami waves in-land https://economictimes.indiatimes.com/news/science/india-to-soon-begin-forecasting-reach-of-tsunami-waves-inland/articleshow/64052209.cms Learning from the past: analysis of disaster management structures, polices and institutions in Pakistan http://www.emeraldinsight.com/doi/pdfplus/10.1108/DPM-10-2015-0243 Pakistan needs political will in face of climate threats http://www.trust.org/item/20140905125740-aufeg/?source=dpagetopic Neglected disaster plan deepens Pakistan's climate vulnerability http://www.trust.org/item/20140930090403-5ern1/?source=fiOtherNews2 Anti-erosion effort stops Pakistani farmers abandoning mountain fields http://www.trust.org/item/20140814152515-7hnau/?source=jtOtherNews1 Transforming Pakistan's disaster response https://www.thethirdpole.net/2016/08/04/transforming-pakistans-disaster-response/ Karachi's mangroves, defence against storms and tsunamis, threatened http://news.pakeforum.com/tag/tsunamis Landslides menace Kashmir's unprotected mountain villages http://www.trust.org/item/20141009190641-gj9f1/?source=fiOtherNews3

Afghan plea for help on disaster risk reduction http://www.unisdr.org/archive/37392 Introduction to the ECO-DRR project in Afghanistan http://postconflict.unep.ch/publications/Eco-DRR/Afghanistan UNEP ECODRR Mountainpartners 2016.pdf Bottom up DRR in Kazakhstan http://www.undp.org/content/undp/en/home/ourwork/ourstories/bottom-up-disaster-risk-reduction-in-kazakhstan/ Kyrgyzstan platform for DRR - sustainable development through coordination and collaboration http://www.preventionweb.net/files/46905_46905publicationfinalenversion1.pdf Unsustainable ecological decline in rural China http://www.southampton.ac.uk/geography/news/2015/02/16-unsustainable-ecological-decline-in-ruralchina.page? Investigation for the initiation of a loess landslide based on the unsaturated permeability and strength theory http://www.geoenvironmental-disasters.com/content/pdf/s40677-015-0032-7.pdf Slow drowning of Tibetan grasslands fenced in by Beijing http://www.scidev.net/global/livestock/feature/tibetan-herders-livestock-disaster-fences-floods.html From Aceh to Tacloban – lessons from a decade of disaster http://www.unisdr.org/archive/37392 ADB's operational plan for integrated disaster risk management 2014-2020 http://www.adb.org/sites/default/files/integrated-disaster-risk-management-operational-plan.pdf Strengthening regional and national for capacity for disaster risk management: the case of ASEAN http://www.brookings.edu/~/media/research/files/reports/2014/11/05%20south%20east%20asia%20drm%20petz/ strengthening%20regional%20and%20national%20capacity%20for%20drm%20%20case%20of%20asean%20no vember%205%202014 From Bangkok to Bhutan, growing cities race to outrun disasters http://www.trust.org/item/20150212133738-oppvh Disaster Management research roadmap for the ASEAN region https://ahacentre.org/wp-content/uploads/2018/03/ASEAN-Region Disaster-Management 0228 optimize.pdf ASEAN Disaster Management Reference Handbook Asean's response to disaster https://www.khmertimeskh.com/50604142/aseans-response-to-disaster/ https://www.cfe-dmha.org/LinkClick.aspx?fileticket=3ZJKfisgWnk%3d&portalid=0 Specific hazards: handbook on geospatial decision support in ASEAN countries http://www.unescap.org/sites/default/files/Low%20res Geospatial%20Hanbook ESCAP%20IDD 1 0.pdf Sharing space-based information: procedural guidelines for disaster emergency response in ASEAN countries http://www.unescap.org/sites/default/files/Low%20res Procedural%20Guidelines ESCAP%20IDD 0-2.pdf Disaster preparedness education saves more lives http://www.vn.undp.org/content/vietnam/en/home/presscenter/pressreleases/2017/09/20/disaster-preparednesseducation-saves-more-lives.html Disasters, resilience, and the ASEAN integration http://www.globalhealthaction.net/index.php/gha/article/view/25134 Resilience and the ASEAN Community: convergence of opportunity http://www.eria.org/ERIA-DP-2016-02.pdf The risk of disaster-induced displacement in South Asia http://www.internal-displacement.org/assets/publications/images/2015/201504-ap-south-asia-disaster-induceddisplacement-risk-en.pdf Peatlands of South East Asia are heading towards a socio-economic disaster http://www.wetlands.org/News/tabid/66/ID/4190/PRESS-RELEASE-Peatlands-of-South-East-Asia-are-headingtowards-a-socio-economic-disaster.aspx Geo-enabled information for DRR http://lib.icimod.org/record/29742/files/Final Disaster%20Flyer WEB.pdf Nuclear disaster risk assessment of Pakistan http://www.aiscience.org/journal/paperInfo/ajssr?paperId=857

Bhutan performance audit of disaster management 2015 http://www.bhutanaudit.gov.bt/Publication/Performance_Audit_Report_on_Disaster_Management.pdf The DRR genius of the indigenous http://www.rappler.com/move-ph/issues/disasters/preparedness/108992-disaster-risk-reduction-genius-indigenous Thailand: empowering communities and strengthening realities http://www.adpc.net/igo/category/ID927/doc/2015-cGw3AM-ADPC-ADPC_Empowering_communities_Thailand.pdf Urban wetlands – a new model for urban resilience in Colombo, Sri Lanka https://www.gfdrr.org/sites/default/files/publication/Colombo_SoI.pdf Disaster law in Southeast Asia http://www.ifrc.org/Global/Publications/IDRL/Publications/Disaster%20Law%20in%20Southeast%20Asia_Sum

mary%20of%20Progress%202012-2015%20FINAL.pdf

Philippines launches innovative insurance program to boost natural DRM

http://www.worldbank.org/en/news/press-release/2017/08/15/philippines-launches-innovative-insurance-program-to-boost-natural-disaster-risk-management

Specific Hazards: handbook on geospatial decision support in ASEAN countries

http://www.unescap.org/sites/default/files/publications/Ref%20manual_specific%20hazards.pdfMappi

The Mekong Basin Chapter:

A needs assessment of geospatial data and technologies in the Lower Mekong Region http://servir.adpc.net/sites/default/files/know/SERVIR-Mekong 2015 RegionalNeedsAssessment 0.pdf

Socioeconomic impact evaluation for near real-time flood detection in the Lower Mekong River Basin http://www.mdpi.com/2306-5338/5/2/23

Integrating climate change into regional disaster risk management at the Mekong River Commission <u>http://www.preventionweb.net/files/submissions/18610_mekongrivercommission.pdf</u>

Climate change and rural communities in the greater Mekong Subregion

http://www.gms-

eoc.org/uploads/resources/446/attachment/Climate%20Change%20%26%20Rural%20Communities%20in%20th e%20GMS%20-

%20A%20Framework%20for%20Assessing%20Vulnerability%20%26%20Adaptation%20Options.pdf

Climate change vulnerability mapping for greater Mekong sub-region <u>http://unesdoc.unesco.org/images/0024/002435/243557E.pdf</u>

In pursuit of effective flood risk management in the Mekong Region

http://www.irdrinternational.org/2019/03/15/in-pursuit-of-effective-flood-risk-management-in-the-mekong-region/

Nature-based solutions for building resilience in towns and cities: case studies from the Greater Mekong Region https://www.adb.org/sites/default/files/publication/215721/nature-based-solutions.pdf

Building climate resilience and ensuring sustainable livelihoods of farmers in the Mekong Delta – Vietnam <u>http://www.worldbank.org/en/news/press-release/2016/06/10/vietnam-building-climate-resilience-and-ensuring-sustainable-livelihoods-of-farmers-in-the-mekong-delta</u>

Understanding urban transformations and changing local patterns of risk: lessons from the Mekong Region <u>http://www.unisdr.org/campaign/resilientcities/assets/documents/privatepages/Understanding%20urban%20transformations%20and%20changing%20local%20patterns%20of%20risk%20lessons%20from%20the%20Mekong%20Region.pdf</u>

Livelihoods under stress: critical assets and mobility outcomes in the Mekong Delta, Vietnam <u>http://publications.iom.int/bookstore/free/PolicyBriefSeriesMECC_Issue1_Dec2014.pdf</u>

Forests and funghi: Mekong communities reap the rewards of a 500 million-year-old partnership <u>http://blog.worldagroforestry.org/index.php/2017/03/22/forests-fungi-mekong-communities-reap-rewards-500-million-year-old-partnership/</u>

Planned relocations in the Mekong Delta: a successful model for climate change adaptation, a cautionary tale, or both?

http://www.brookings.edu/~/media/research/files/papers/2015/06/planned-relocations-climate-change/brookings-planned-relocations-case-studyjane-chun-vietnam-case-study-june-2015.pdf

Relocation as an adaptation strategy to environmental stress

https://publications.iom.int/system/files/pdf/policy_brief_issue6_1.pdf

Climate change in the lower Mekong basin

http://mekongarcc.net/sites/default/files/usaid_marcc_values_at_risk_report_with_exesum-revised.pdf

New index for Vietnam climate resilience

http://vietnamnews.vn/environment/348264/new-index-for-vn-climate-

resilience.html#HJBR09BXTOmmQwiw.97

Toward integrated disaster risk management in Vietnam

http://documents.worldbank.org/curated/en/761091508230982951/pdf/120444-REVISED-PUBLIC-17027-

Vietnam-Strategy-OVERVIEW-Sep12-2017.pdf

Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam http://iopscience.iop.org/1748-9326/9/8/084010/pdf/1748-9326_9_8_084010.pdf

Drought and salt water intrusion in the Mekong Delta, Vietnam

https://reliefweb.int/sites/reliefweb.int/files/resources/Mekong%20Delta%20Drough%20and%20Saltwater%20Int rusion_Joint%20Assessment%20Report_Feb%202020.pdf Coastal subsidence and relative sea level rise (Mekong Delta, Vietnam, Cambodia) <u>http://iopscience.iop.org/1748-9326/9/9/091002/article</u> New elevation model shows that the Mekong Delta is just 80cm above sea level <u>https://www.deltares.nl/en/news/new-elevation-model-shows-mekong-delta-just-eighty-centimetres-sea-level/</u> A needs assessment of geospatial data and technologies in the Lower Mekong Delta <u>http://servir.adpc.net/knowledge-products/needs-assessment-geospatial-data-and-technologies-lower-mekong-region</u> Green infrastructure: a multi-purpose solution for cities <u>http://blog.i-s-e-t.org/green-infrastructure-a-multi-purpose-solution-for-cities/</u> Damming the Mekong River <u>https://www.bbc.co.uk/programmes/w3csxfl5</u>

50

The Bangladesh Chapter:

BBC Bangladesh profile http://www.bbc.com/news/world-south-asia-12650940 Climate risk profile – Bangladesh https://www.climatelinks.org/sites/default/files/asset/document/2018-02-Mar CadmusCISF Climate-Risk-Profile-Bangladesh.pdf Estimating costs and benefits for provision of hydromet services in Bangladesh http://documents.worldbank.org/curated/en/632941546582166749/pdf/Costs-and-Benefits-Analysis-for-Provision-of-Hydromet-Services-in-Bangladesh.pdf Climate change, water scarcity, and health adaptation in Southwestern Coastal Bangladesh https://link.springer.com/content/pdf/10.1007%2Fs13753-018-0211-8.pdf Combining humanitarian and development approaches in Bangladesh: using VRA and PCMA technologies http://policy-practice.oxfam.org.uk/publications/combining-humanitarian-and-development-approaches-inbangladesh-using-vra-and-p-620220 The potential of strategic environmental assessment to reduce disaster risks through climate change in coastal Bangladesh https://www.emeraldinsight.com/doi/full/10.1108/IJCCSM-11-2017-0201 The association between temperature, rainfall and humidity with common climate-sensitive infectious disease http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0199579&type=printable Mainstreaming ecosystem services based climate change adaptation in Bangladesh http://www.preventionweb.net/publications/view/53537?&a=email&utm_source=pw_email Resilient Bangladesh: UNDP Annual Report 2013-2014 http://www.bd.undp.org/content/dam/bangladesh/docs/Publications/Pub-2014/UNDP%20annual%20report%202013%20to%202014%20FINAL%20ONLINE%20VERSION.PDF A study on Cyclone Aila recovery in Koyra, Bangladesh https://link.springer.com/content/pdf/10.1007%2Fs13753-018-0166-9.pdf Bangladesh – forecast based financing http://www.preventionweb.net/files/submissions/52242 germanredcrossbangladeshforecastbasedfinancingfbfstan dardoperat.proced.sopbookletdec2016.pdf Bracing for a crisis within a crisis in Bangaladesh https://media.ifrc.org/ifrc/2018/04/06/bracing-crisis-within-crisis-bangladesh/ Making development stronger than disaster http://www.thedailystar.net/opinion/environment/making-development-stronger-disaster-1297579 UNESCO urges Bangladesh to scrap Sundarbans plant http://www.france24.com/en/20161019-unesco-urges-bangladesh-scrap-sundarbans-plant Measures to address loss and damage including insurance for coastal fisher folk of Bangladesh http://www.preventionweb.net/files/55677 measurestoaddresslossanddamageinclu.pdf Prime Minister wins top UN Environmental Prize for policy leadership http://www.preventionweb.net/english/professional/news/v.php?id=45763 Bangladesh closes one of world's most polluted places https://phys.org/news/2017-04-bangladesh-world-polluted.html Flood prone Bangladesh plans to keep food safe in home silos http://www.preventionweb.net/news/view/49925?&a=email&utm_source=pw_email Approaches to loss and damage for climate change impacts: lessons from Bangladesh http://www.preventionweb.net/files/submissions/50516 approachestoaddresslossanddamage.pdf Climate change adaptation and vulnerability assessment of water resources systems in Bangladesh http://www.mdpi.com/search?q=Climate+change+adaptation+and+vulnerability+assessment+of+water+resources +systems+in+developing+countries&iournal=water&volume=&authors=§ion=&issue=&article_type=&speci al issue=&page=&search=Search

Knowledge for life on the Bangladesh coast

http://www.unisdr.org/archive/46104 Facing disasters: lessons from a Bangladeshi island https://theconversation.com/facing-disasters-lessons-from-a-bangladeshi-island-80706 Can mangroves mitigate catastrophic consequences of cyclone-induced storm damage? https://sciencetrends.com/can-mangroves-mitigate-catastrophic-consequences-of-cyclone-induced-storm-surges/ Substantial indigenous knowledge makes community resilient http://www.preventionweb.net/files/46199 46135knowledgeislifeconcernworldwid.pdf The dynamics among poverty, vulnerability, and resilience: evidence from coastal Bangladesh http://link.springer.com/article/10.1007/s11069-015-1950-0/fulltext.html Climate change, natural disasters and vulnerability to land displacement in coastal regions of Bangladesh http://www.ijias.issr-journals.org/abstract.php?article=IJIAS-13-293-07 Communities find solutions to tackling climate change in flood hit areas in Bangladesh http://www.worldbank.org/en/news/feature/2014/12/15/communities-solutions-tackling-climate-change-flood-hitareas Bangladesh constructs hundreds of new disaster resilient structures in cyclone prone districts http://www.shanghaidaily.com/article/article xinhua.aspx?id=274255 Urban flooding of Greater Dhaka in a changing climate http://wwwwds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2015/10/29/090224b0831793ce/2 0/Rendere d/PDF/Urban0flooding0nce0to0disaster0risk.pdf Using satellites to aid flood relief efforts http://www.icimod.org/?q=28604 The most erosive area on the Padma https://earthobservatory.nasa.gov/images/92529/the-most-erosive-area-on-the-padma Meandering bends of the Lower Padma River https://earthobservatory.nasa.gov/images/92672/meandering-bends-of-the-lower-padma-river Thirsty megacities poisoning rural groundwater http://www.bangkokpost.com/news/world/1096417/thirsty-megacities-poisoning-rural-groundwater-study Climate and disaster resilience of Greater Dhaka Area: a micro level analysis http://wwwwds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2015/11/19/090224b0831ebd6d/1 0/Rendere d/PDF/Climate0and0di0micro0level0analysis.pdf Strengthening urban resilience in Bangladesh https://www.gfdrr.org/sites/gfdrr/files/publication/18%20Bangladesh.pdf Putting vulnerable communities on the map: young map-makers in Bangaladesh http://www.ycareinternational.org/wp-content/uploads/2015/11/Putting-vulnerable-communities-on-themap Final.pdf Science, DRR and Bangladesh http://specialpapers.gsapubs.org/content/early/2016/03/07/2016.2520 27.full.pdf Mapping floods in Bangladesh http://www.icimod.org/?q=28252 Women in Bangladesh build resilience against climate change http://www.unwomen.org/en/news/stories/2015/9/bangladesh-climate-change Nutritional effects of flooding due to unseasonably early monsoonal rainfall in Bangladesh https://www.thelancet.com/pdfs/journals/lanplh/PIIS2542-5196(18)30088-3.pdf Project selection in Bangladesh flood DRM http://www.bdrcs.org/sites/default/files/Reports/Final%20report%20on%20Community%20selection%20for%20 CBDRR%20project.pdf Building adaptive capacity to climate change in less developed countries http://conference2011.wcrp-climate.org/documents/Lemos.pdf The (mis) allocation of public spending in a low-income country: evidence from DRR spending in Bangladesh http://researcharchive.vuw.ac.nz/bitstream/handle/10063/4194/Working%20paper.pdf

Empowering communities in Bangladesh with disaster management skills and knowledge http://www.ycareinternational.org/wp-content/uploads/2015/01/Empowering-communities-in-Bangladesh-withdisaster-management-skills-and-knowledge webO.pdf Empowering women against natural disasters http://www.wfp.org/stories/bangladesh-empowering-women-natural-disasters Planning and implementation of post-Sidr housing recovery: practice, lessons and future applications https://www.gfdrr.org/sites/gfdrr/files/Bangladesh%20Post-Sidr%20Housing%20Recovery.pdf World Bank, Climate Finance & Bangladesh http://www.bicusa.org/en/Document.102840.pdf World Bank commits over \$1 billion to Bangladesh http://www.worldbank.org/en/news/press-release/2014/12/16/world-bank-commits-over-1-billion-usd-bangladesh Crab risk reduction in Bangladesh! http://www.unisdr.org/archive/40880 Bangladesh farmers turn back the clock to combat climate stresses http://www.trust.org/item/20141126125124-0i6go/?source=fiOtherNews2 Move to bring 12,000 families under crop insurance coverage http://www.thefinancialexpress-bd.com/2015/08/14/103907 Salinity intrusion in a changing climate scenario will hit coastal Bangladesh hard http://www.worldbank.org/en/news/feature/2015/02/17/salinity-intrusion-in-changing-climate-scenario-will-hitcoastal-bangladesh-hard Livelihood security in changing climate: insights from the coastal region of Bangladesh http://www.preventionweb.net/files/43514 islamicreliefpolicybrieflivelihoods.pdf Bangladesh oil spill threatens rare dolphins http://www.hindustantimes.com/india-news/oil-spill-in-bangladesh-high-alert-in-india/article1-1295627.aspx To help climate migrants, Bangladesh takes back land from the sea http://www.trust.org/item/20150909073825-39czr/ Demand for complementary financial and technological tools for managing drought risk http://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/129092/filename/129303.pdf Bangladesh declares lightning strikes a disaster as deaths surge http://news.trust.org/item/20160622142821-46d02/?source=fiOtherNews2 Chronological history and destruction pattern tornadoes in Bangladesh http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=163&doi=10.11648/j.ajep.20160504.11 Review of earthquake contingency plan of Dhaka City Corporation http://www.thedailystar.net/round-tables/review-earthquake-contingency-plan-dhaka-city-corporation-1508236

The Nepal Chapter

Managing monsoon floods amid Covid-19 https://myrepublica.nagariknetwork.com/news/managing-monsoon-floods-amid-covid-19/ A full description of the Nepal earthquake of April 25, 2015 can be found at the following URL: http://www.icesfoundation.org/Pages/CustomPage.aspx?ID=133 Strategic framework for resilient livelihoods in earthquake-affected areas of Nepal http://lib.icimod.org/record/30799/files/ICIMOD WP 15.6.pdf Reviving agriculture in rural areas of earthquake-hit Nepal http://www.acted.org/fr/node/11431 Nepalese farmers have much to teach us about DRR https://www.islamic-relief.org/nepalese-farmers-have-much-to-teach-us-about-disaster-risk-reduction/ Experts urge a new Nepal body to manage landslides http://kathmandupost.ekantipur.com/news/2018-04-17/experts-urge-new-body-to-manage-landslides.html Agricultural livelihood earthquake impact appraisal in 6 most affected districts http://foodsecuritycluster.net/sites/default/files/Nepal%20ALIA%20-%20Agricultural%20Livelihoods%20Impact%20Appraisal%20-%20June%2006 0.pdf Understanding the role of remittances in reducing earthquake risk http://un.org.np/sites/default/files/understand-role-remittances.pdf A comparative assessment of school safety after the Nepal earthquakes of 2015 http://lib.icimod.org/record/30799/files/ICIMOD WP 15.6.pdf Disaster risk reduction knowledge of local people in Nepal http://www.geoenvironmental-disasters.com/content/pdf/s40677-014-0011-4.pdf Seasonal vulnerability and risk calendar in Nepal http://www.gsdrc.org/wp-content/uploads/2016/04/HDQ1358.pdf Glacier status in Nepal and decadal change from 1980-2010 based on Landsat data http://lib.icimod.org/record/29591/files/GSN-RR14-2.pdf Nepal landslide deaths highlight disaster risk reduction gaps http://www.irinnews.org/report/100451/nepal-landslide-deaths-highlight-disaster-risk-reduction-gaps Nepal's disaster preparedness woefully inadequate http://www.myrepublica.com/portal/index.php?action=news_details&news_id=81437 An unseen reality – recovery following small disasters in remote areas – the case of Sannighat, Nepal http://www.preventionweb.net/files/41754 41754unseenrealityrecoveryofremotec.pdf Forecast-based financing in Nepal https://docs.wfp.org/api/documents/WFP-0000108408/download/? ga=2.124702858.1072204829.1589382845-1831333437.1589382845 As Himalayas warm, Nepal's climate migrants struggle to survive https://www.nytimes.com/2020/04/05/world/asia/nepal-himalayas-glacier-climate.html Impacts of climate change on hydrological regime and water resources management of the Koshi River Basin http://www.sciencedirect.com/science/article/pii/S2214581815000889 Transforming river basin management – stories from the Koshi River http://lib.icimod.org/record/31841/files/River basin Management.pdf Eve on the Sun Koshi landslide: monitoring and infrastructure planning key to minimizing scale of disasters http://www.icimod.org/?q=14356 Living with the floods: Sustainable management of the Kosi River (Nepal) https://www.dur.ac.uk/resources/ihrr/KosiRiverPolicyBriefSept2014.pdf What we can learn from the August 2014 Karnali River floods http://knowledge.zurich.com/wp-content/uploads/2015/07/risk-nexus-karnali-river-floods-nepal-july-2015.pdf Adapting to climate change for sustainable agribusiness in high mountain watersheds – case study Nepal http://lib.icimod.org/record/30105/files/HIMALI%20Report 15.pdf Re-thinking climate interventions in fragile and conflict-affected states: insights from Nepal

http://www.newsecuritybeat.org/2015/02/re-thinking-climate-interventions-fragile-conflict-affected-statesinsights-nepal/

Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery http://www.the-cryosphere.net/5/349/2011/tc-5-349-2011.pdf

Strengthening livelihood capacities to DRR in Nepal

http://flagship4.nrrc.org.np/document/strengthening-livelihood-capacities-disaster-risk-reduction-nepalAid aims to help rice farmers in a warming world

http://www.climatenewsnetwork.net/aid-aims-help-rice-farmers-warming-world/

Nepal: preparing farmers for climate change

http://www.ekantipur.com.np/2014/11/25/development/preparing-farmers-for-climate-change/398140.html

After Nepal is Asia prepared for the 'big one'?

http://www.irinnews.org/fr/report/101902/after-nepal-is-south-asia-prepared-for-the-big-one

Building resilience in Nepal through Public-Private-Partnerships

http://www3.weforum.org/docs/GAC15_Building_Resilience_in_Nepal_report_1510.pdf

New knowledge helps Nepal adapt to uncertain climate future

http://www.adb.org/results/new-knowledge-helps-nepal-adapt-uncertain-climate-future

Vulnerability and impacts assessment for adaptation planning in Panchase Mountain Ecological Region, Nepal <u>http://www.undp-alm.org/sites/default/files/downloads/dixit_et_al_2015_nepal_via_report_panchase_final.pdf</u>

Tonle Sap flood pulse visualization

http://www.cev.washington.edu/file/Tonle_Sap_Flood_Pulse.html

Nepal lake: work begins to drain rising waters near Everest

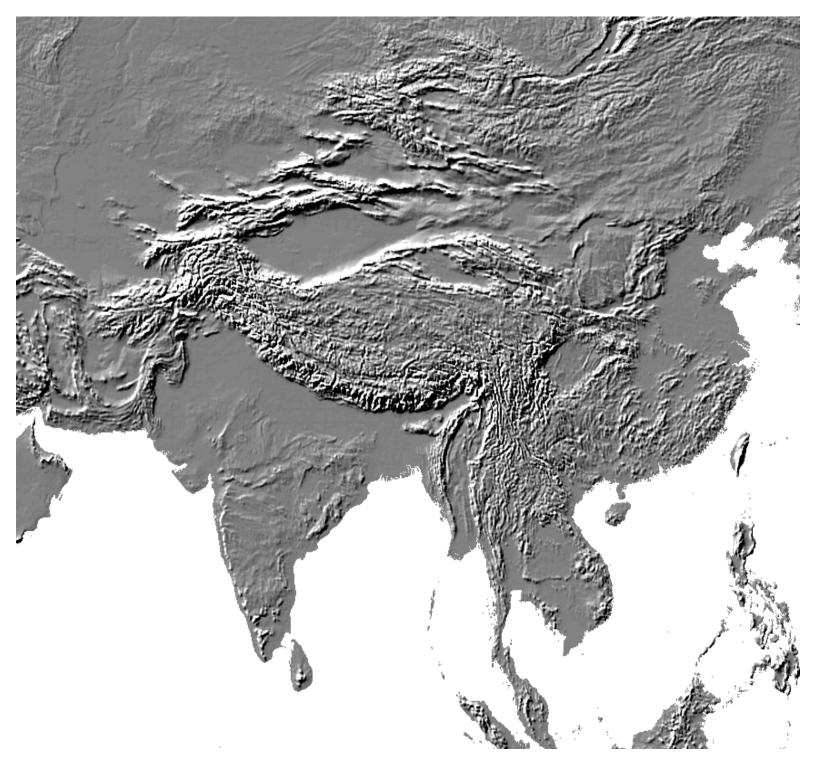
http://www.bbc.com/news/world-asia-36434040

New drain system to unleash potential of Siddhartha Nagar in Nepal

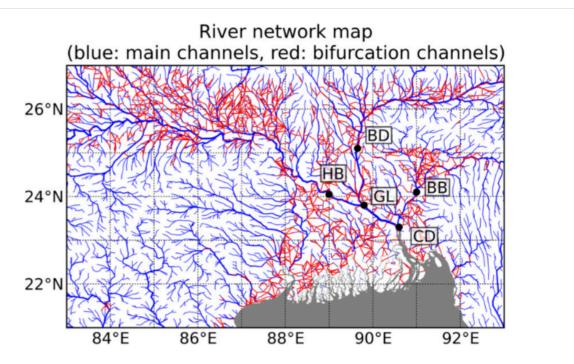
http://blogs.adb.org/blog/new-drain-system-unleash-potential-siddhartha-nagar-nepal

Award-winning Nepalese farmers grow bananas to avert floods

http://news.trust.org/item/20180117060033-7hc2t


A journey down the Karnali: living in fear of floods

https://www.thethirdpole.net/en/2019/01/07/a-journey-down-the-karnali-living-in-fear-of-floods/


The Indonesian Chapter

After the Palu and Lombok disasters: a new chapter of disaster governance in Indonesia? https://theconversation.com/after-the-palu-and-lombok-disasters-a-new-chapter-of-disaster-governance-inindonesia-105860 A review of research trends on natural hazards, DRR and climate change in Indonesia https://www.nat-hazards-earth-syst-sci.net/18/1785/2018/nhess-18-1785-2018.pdf Indonesia's haze and disaster governance deficit https://www.rsis.edu.sg/wp-content/uploads/2015/10/CO15208.pdf Managing peatlands to cope with climate change: Indonesia's experience http://wedocs.unep.org/bitstream/handle/20.500.11822/25352/Managing Peatlands indonesia.pdf?sequence=1&i sAllowed=y Mount Agung volcano erupts https://public.wmo.int/en/media/news/mount-agung-volcano-erupts Investigation of the initiation mechanism of an earthquake-induced landslide during rainfall: a case study of the Tandikat landslide, West Sumatra, Indonesia http://www.geoenvironmental-disasters.com/content/pdf/s40677-014-0004-3.pdf The 2005 catastrophic waste avalanche at Leuwigaja dumpsite, Bandung, Indonesia http://www.geoenvironmental-disasters.com/content/pdf/s40677-014-0010-5.pdf Natural disaster damage indices based on remotely sensed data - Indonesia http://documents.worldbank.org/curated/en/533341504882194154/pdf/WPS8188.pdf What feeds Indonesia's destructive mud eruption? https://eos.org/research-spotlights/what-feeds-indonesias-destructive-muderuption?utm source=eos&utm medium=email&utm campaign=EosBuzz010518 20-years of community-based DRR experience from a dryland village in Indonesia https://jamba.org.za/index.php/jamba/article/view/502/877


APPENDIX B (Overall Topology & Tectonics)

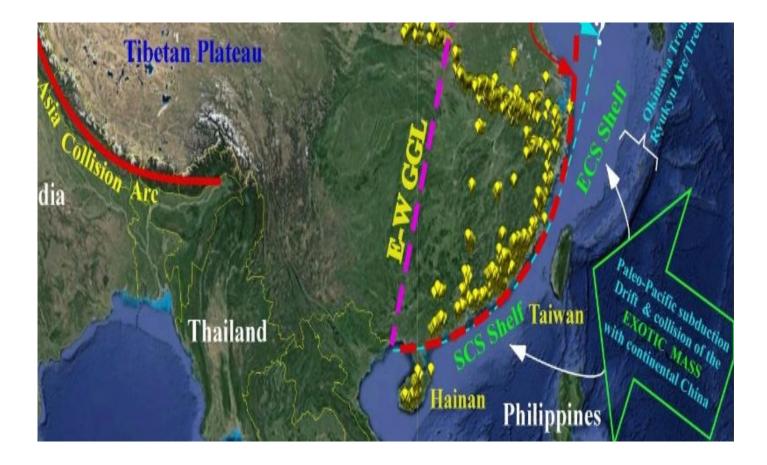
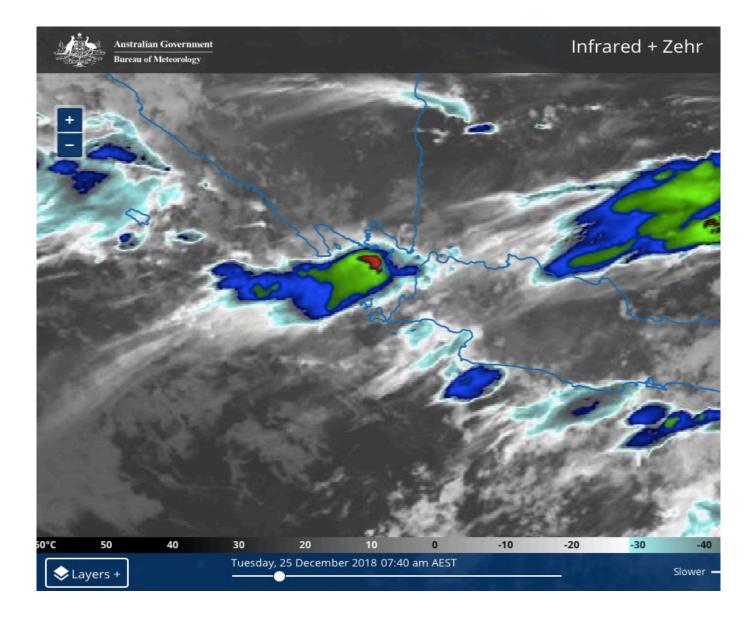
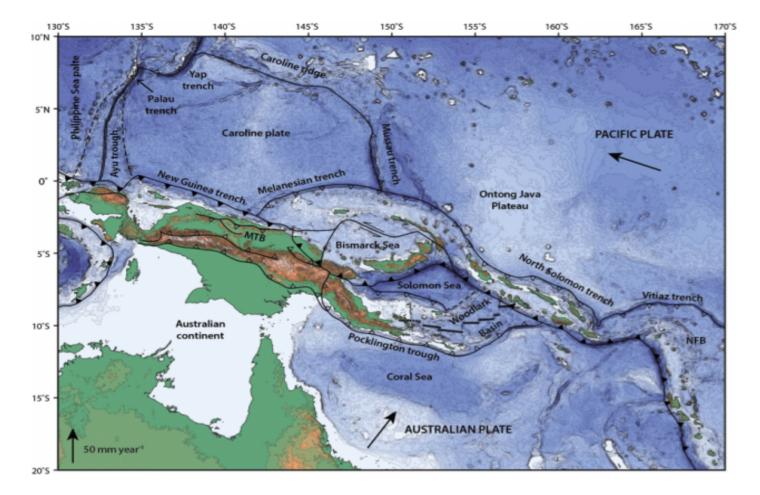
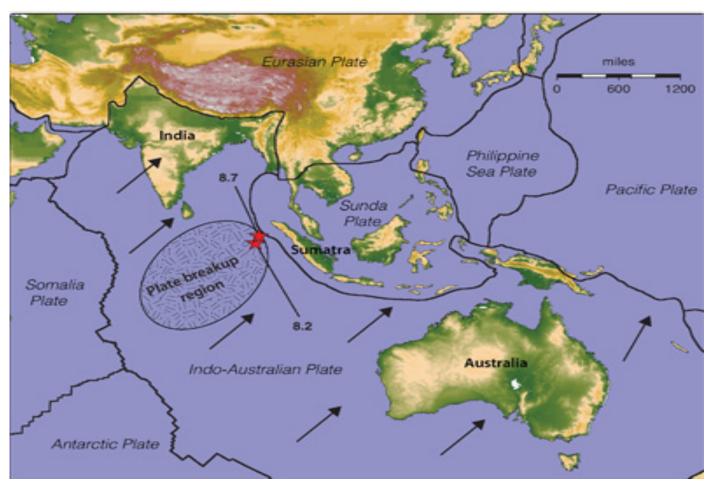


Figure 1. The river network map around Bangladesh with locations and names of the selected stations. The blue and red lines indicate main channels and bifurcation channels, respectively. Bifurcation channels are both diverging river channels and flow routes in floodplains during floods [20]. HB: Hardinge Bridge, BB: Bhairab Bazar, CD: Chandpur, BD: Bahadurabad, and GL: Goalondo. HB and BD are the stations gauging river discharge, and others are those gauging water levels.







Anak-Krakatau volcano (Sundra Straights) erupting and triggering tsunamis that killed 300+ people

