How to Prepare Weather and Climate Models for Future HPC Hardware

Peter Düben

European Weather Centre (ECMWF)

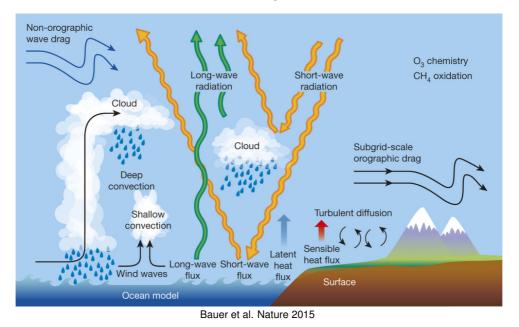
CECMWF

Se the royal society

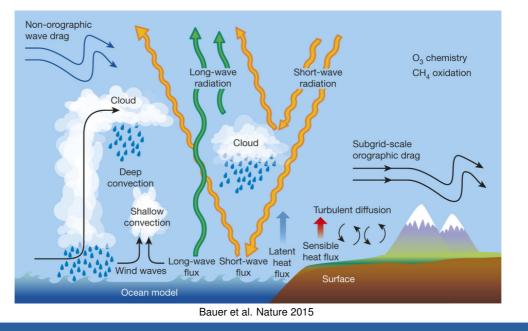
💋 esiwace

The European Weather Centre (ECMWF)

www.ecmwf.int

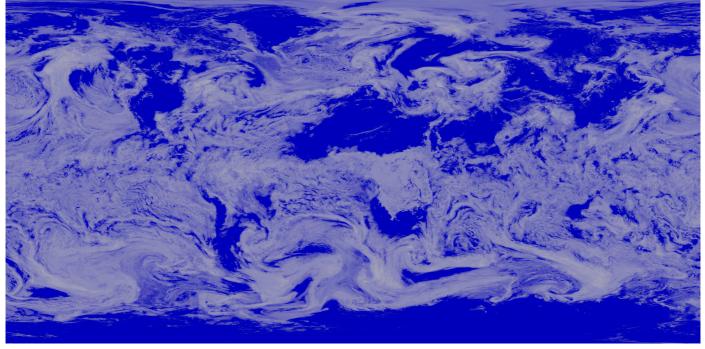

- Independent, intergovernmental organisation supported by 34 states.
- ▶ Research institute and 24/7 operational weather service.
- ► Weather forecasts cover time frames from medium-range, to monthly and seasonal.
- $\blacktriangleright\,$ Based in the UK, \approx 350 member of staff from 30 different countries.

C ECMWF	Peter Düben	Page 2	SC THE ROYAL SOCIETY		ESCAPE
----------------	-------------	--------	-------------------------	--	--------



Earth seen from Apollo 17 (NASA 1972)

C ECMWF	Peter Düben	Page 3	Se society	ESCAPE



C ECMWF	Peter Düben	Page 3	Se THE ROYAL SOCIETY	ESCAPE

The Earth System is complex, chaotic and huge, and we do not have sufficient resolution to resolve all important processes.

CECMWF	Peter Düben	Page 3	See THE ROYAL SOCIETY	ESCAPE

Clouds in a global weather simulation at 1 km resolution (Figure courtesy of Nils Wedi)

C ECMWF	Peter Düben	Page 3	SC SOCIETY	ESCAPE

Weather and climate models are high performance computing applications.

C ECMWF	Peter Düben	Page 4	See THE ROYAL SOCIETY	ESCAPE

Weather and climate models are high performance computing applications.

Forecast quality depends on resolution and model complexity.

C ECMWF	Peter Düben	Page 4	SC THE ROYAL SOCIETY	ESCAPE

Weather and climate models are high performance computing applications.

Forecast quality depends on resolution and model complexity.

Resolution depends on the performance of state-of-the-art supercomputers.

C ECMWF	Peter Düben	Page 4	THE ROYAL SOCIETY	ESCAPE

Weather and climate models are high performance computing applications.

Forecast quality depends on resolution and model complexity.

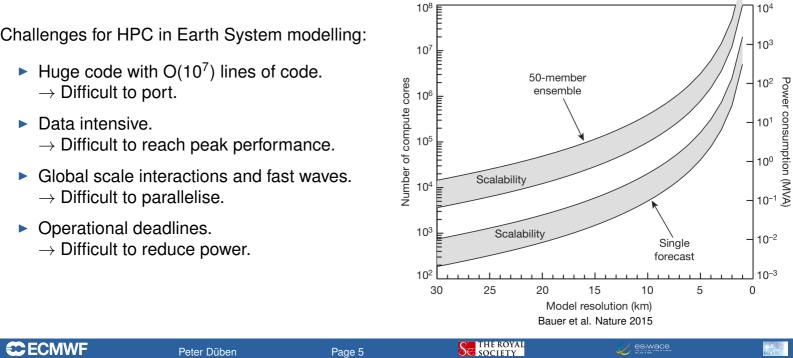
Resolution depends on the performance of state-of-the-art supercomputers.

- Individual processors will not be faster.
 \rightarrow Parallelisation (> 10⁶ parallel processing units).
- > Parallelisation and performance will be essential for future model development.
- ▶ We fail to operate close to peak performance.
- Power consumption will be a big problem.

C ECMWF	Peter Düben	Page 4	SC THE ROYAL SOCIETY	ESCAPE

Weather and climate models are high performance computing applications.

Forecast quality depends on resolution and model complexity.


Resolution depends on the performance of state-of-the-art supercomputers.

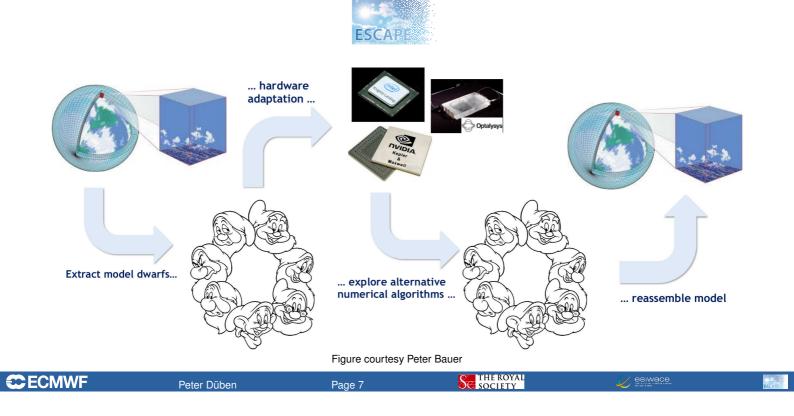
- ► Individual processors will not be faster.
 → Parallelisation (> 10⁶ parallel processing units).
- > Parallelisation and performance will be essential for future model development.
- ▶ We fail to operate close to peak performance.
- Power consumption will be a big problem.

The free lunch is over.

CECMWF	Peter Düben	Page 4	See Society	ESCAPE

ECMWF's scalability project towards exascale supercomputing

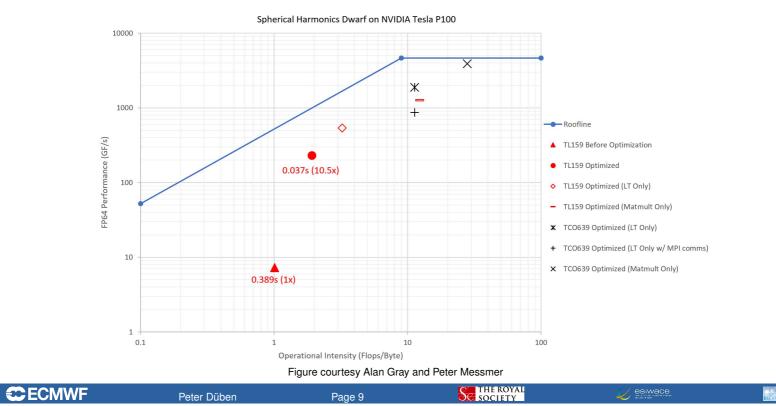
ECMWF's scalability project towards exascale supercomputing

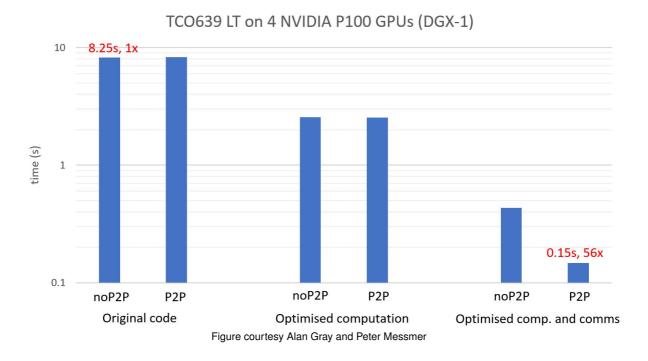

A community effort to takle the challenges:

- Define and encapsulate the fundamental algorithmic building blocks 'Weather & Climate Dwarfs' – to port to accelerators and to allow co-design.
- Introduce domain specific languages.
- Develop new algorithms for use in extreme scale (elliptic solver, spatial discretisation, time stepping methods,...).

C ECMWF	Peter Düben	Page 6	SC THE ROYAL SOCIETY	ESCAPE

The ESCAPE project to test GPUs and other accelerators


- At ECMWF we work with a spectral model that describes model fields via global basis functions.
- We need to transform fields between spectral and gridpoint space during every timestep.
- The transformations represent a significant fraction of the computing cost and the relativ cost is increasing with resolution.


CECMWF	Peter Düben	Page 8	See THE ROYAL SOCIETY	ESCAPE

- At ECMWF we work with a spectral model that describes model fields via global basis functions.
- We need to transform fields between spectral and gridpoint space during every timestep.
- The transformations represent a significant fraction of the computing cost and the relativ cost is increasing with resolution.

Can we use GPUs to speed up the transform dwarf?

C ECMWF	Peter Düben	Page 8	See SOCIETY	ESCAPE

C ECMWF	Peter Düben	Page 9	See THE ROYAL SOCIETY	ESCAPE

To speed-up weather forecasts using low numerical precision

The weather and climate community is using double precision as default since decades.

C ECMWF	Peter Düben	Page 10	Se society	ESCARE

To speed-up weather forecasts using low numerical precision

The weather and climate community is using double precision as default since decades.

Reduce numerical precision

- \rightarrow lower power, higher performance.
- \rightarrow higher resolution or increased complexity.
- \rightarrow more accurate predictions of future weather and climate.

To speed-up weather forecasts using low numerical precision

The weather and climate community is using double precision as default since decades.

Reduce numerical precision

- \rightarrow lower power, higher performance.
- \rightarrow higher resolution or increased complexity.
- \rightarrow more accurate predictions of future weather and climate.

Temperature in Munich:

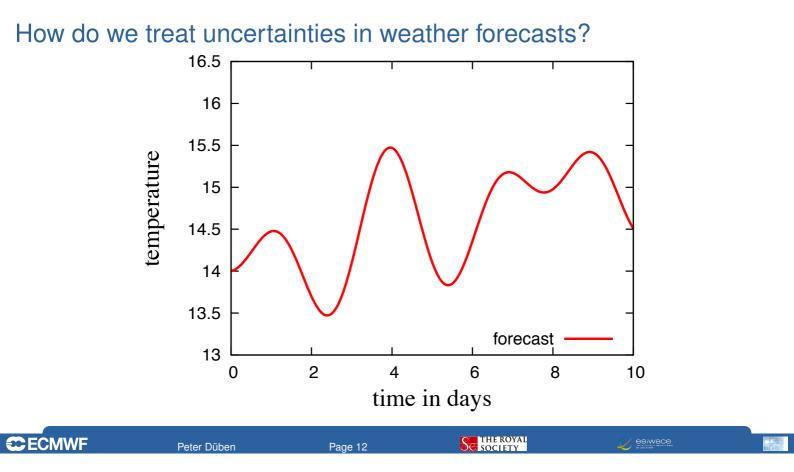
double precision (64 bits): 14.561192512512207°C single precision (32 bits): 14.5611925°C half precision (16 bits): 14.5625°C

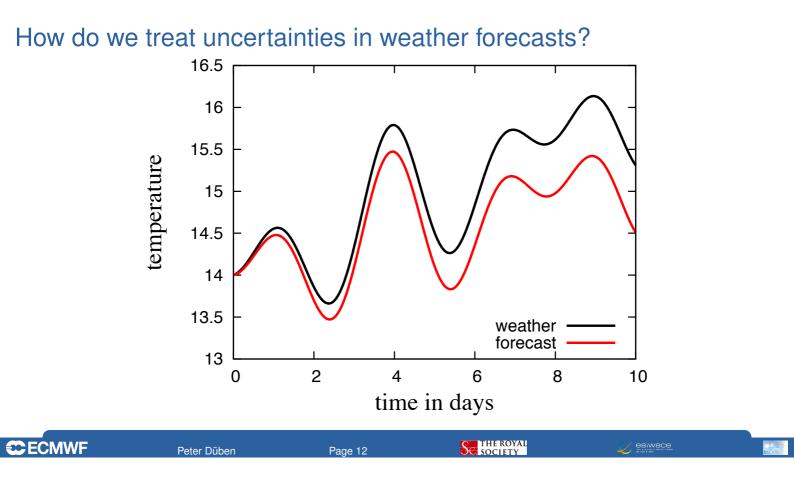
C ECMWF	Peter Düben	Page 10	See Society	ESCARE

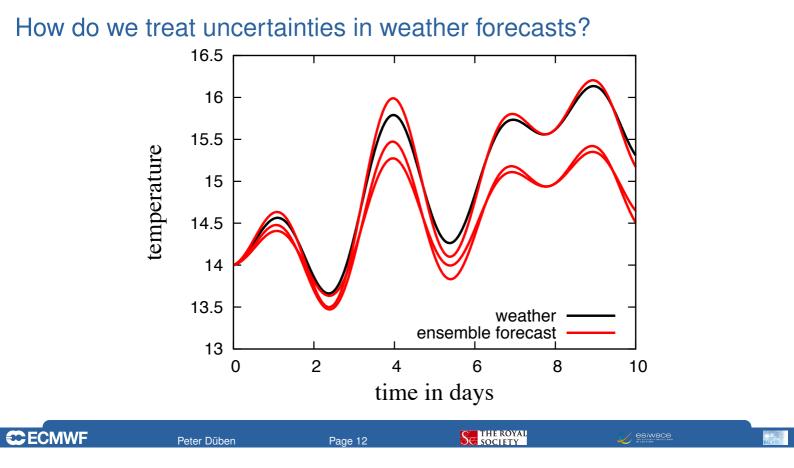
 $\blacktriangleright \text{ double} \rightarrow \text{single} \rightarrow \text{half.}$

C ECMWF	Peter Düben	Page 11	THE ROYAL Society	ESCAPE
1				

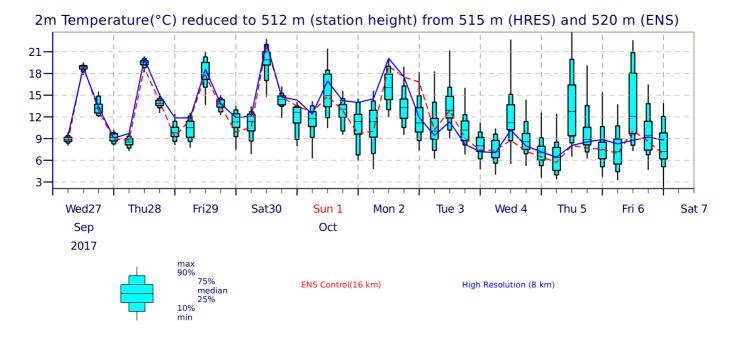
- $\blacktriangleright \text{ double} \rightarrow \text{single} \rightarrow \text{half.}$
- Reduction of precision in data storage.

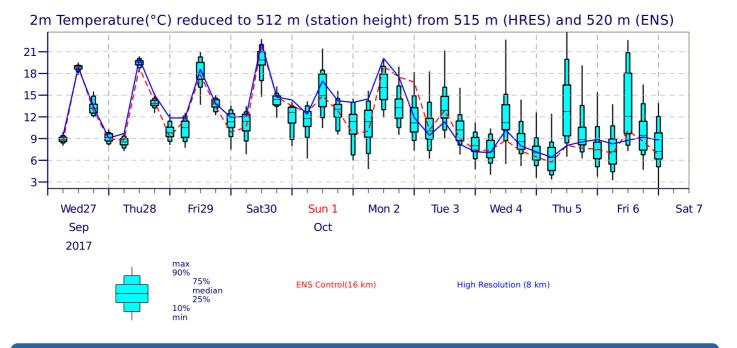

C ECMWF	Peter Düben	Page 11	SC THE ROYAL SOCIETY	ESCAPE


- double \rightarrow single \rightarrow half.
- Reduction of precision in data storage.
- ► Field Programmable Gate Arrays (FPGAs).


Peter Düben	Page 11	See THE ROYAL SOCIETY	ESCARE

- double \rightarrow single \rightarrow half.
- Reduction of precision in data storage.
- ► Field Programmable Gate Arrays (FPGAs).
- Future perspective: Flexible precision hardware, probabilistic CMOS, pruned hardware, hardware with frequent hardware faults,...





C ECMWF	Peter Düben	Page 13	SC THE ROYAL SOCIETY	ESCAPE

	Will a simulation with	h reduced precisi	on change the ensen	nble spread?	
E FCMWF	Potor Dübon	Paga 12	THE ROYAL		

Reduced precision in an atmosphere model

- We calculate weather forecasts with a spectral dynamical core (full 3D dynamics on the globe but no physics).
- Floating point precision is reduced to 8 bits in the significand using an emulator in almost the entire model.
- We estimate energy savings in cooperation with computer scientists (the groups of Krishna Palem - Rice University, Christian Enz - EPFL and John Augustine - IITM).

Resolution	Number of bits	Normalised	Forecast error
	in significand	Energy Demand	Z500 at day 2
235 km	52	1.0	2.3
315 km	52	0.47	4.5
235 km	8	0.29	2.5

C ECMWF	Peter Düben	Page 14	SC THE ROYAL SOCIETY	ESCARE

Reduced precision in an atmosphere model

- We calculate weather forecasts with a spectral dynamical core (full 3D dynamics on the globe but no physics).
- Floating point precision is reduced to 8 bits in the significand using an emulator in almost the entire model.
- We estimate energy savings in cooperation with computer scientists (the groups of Krishna Palem - Rice University, Christian Enz - EPFL and John Augustine - IITM).

Resolution	Number of bits	Normalised	Forecast error
	in significand	Energy Demand	Z500 at day 2
235 km	52	1.0	2.3
315 km	52	0.47	4.5
235 km	8	0.29	2.5

We should reduce precision to allow simulations at higher resolution. The IEEE floating point standard is not ideal.

Peter Düben	Page 14	See THE ROYAL SOCIETY	ESCAPE

Reduced precision in an atmosphere model

- We calculate weather forecasts with a spectral dynamical core (full 3D dynamics on the globe but no physics).
- Floating point precision is reduced to 8 bits in the significand using an emulator in almost the entire model.
- We estimate energy savings in cooperation with computer scientists (the groups of Krishna Palem - Rice University, Christian Enz - EPFL and John Augustine - IITM).

Resolution	Number of bits	Normalised	Forecast error
	in significand	Energy Demand	Z500 at day 2
235 km	52	1.0	2.3
315 km	52	0.47	4.5
235 km	8	0.29	2.5

We should reduce precision to allow simulations at higher resolution. The IEEE floating point standard is not ideal.

Studies with real hardware (FPGAs) confirm this result.

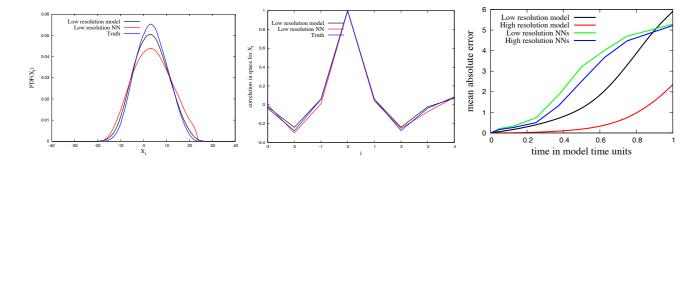
Düben et al. MWR 2015; Düben et al. DATE 2015; Düben et al. JAMES 2015; Russel, Düben et al. FCCM 2015.

C ECMWF	Peter Düben	Page 14	THE ROYAL SOCIETY	ESCARE

ECMWF's weather forecast model in single precision

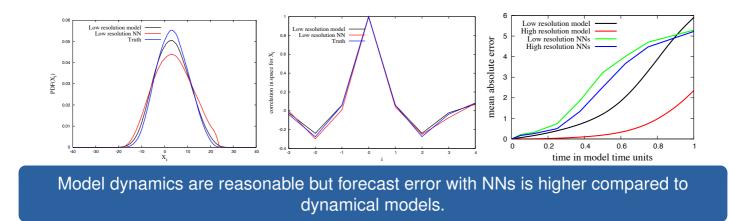
Surface temperature in °C

- ► Forecast quality in double and single precision is almost identical.
- ▶ 40% speed-up.
- Benefit for global simulations at 1.0 km resolution.

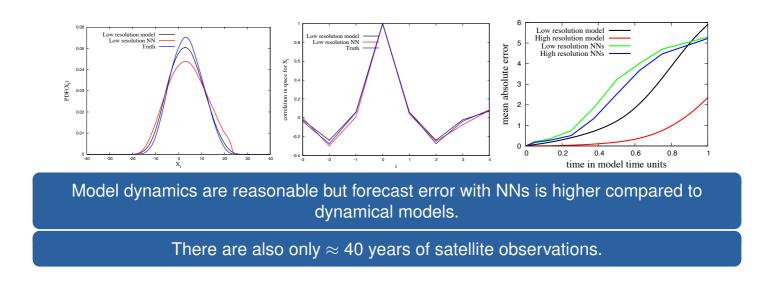

Düben and Palmer MWR 2014; Váňa, Düben et al. MWR 2017

	C ECMWF	Peter Düben	Page 15	SC SOCIETY		ESCAPE
--	----------------	-------------	---------	------------	--	--------

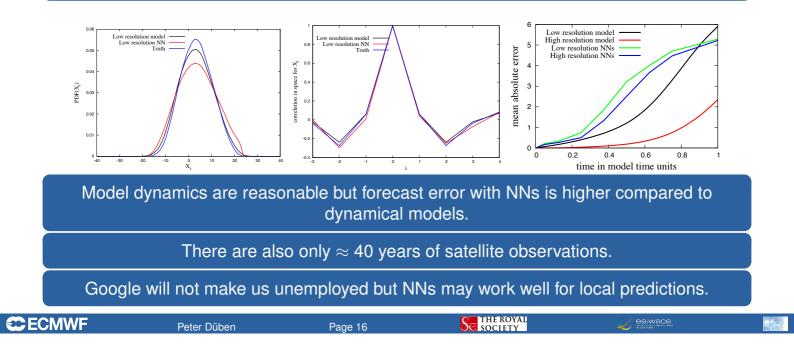
Can Neural Networks (NNs) be used for global weather predictions?


Peter Düben	Page 16	See THE ROYAL SOCIETY	ESCAPE

Can Neural Networks (NNs) be used for global weather predictions?


C ECMWF	Peter Düben	Page 16	THE ROYAL Society	ESCAPE

Can Neural Networks (NNs) be used for global weather predictions?


Peter Düben	Page 16	See Society	ESCAPE

Can Neural Networks (NNs) be used for global weather predictions?

C ECMWF	Peter Düben	Page 16	SC THE ROYAL SOCIETY	ESCAPE

Can Neural Networks (NNs) be used for global weather predictions?

NNs can still be useful for global weather forecasting.

C ECMWF	Peter Düben	Page 17	See THE ROYAL SOCIETY	ESCAPE

NNs can still be useful for global weather forecasting.

NNs can replace existing model components to speed-up simulations.

C ECMWF	Peter Düben	Page 17	THE ROYAL Society	ESCAPE

NNs can still be useful for global weather forecasting.

NNs can replace existing model components to speed-up simulations.

NNs were used to replace the radiation scheme in ECMWF weather forecasts in the past. (Chevallier et al. 2000)

C ECMWF	Peter Düben	Page 17	See THE ROYAL SOCIETY	ESCARE

NNs can still be useful for global weather forecasting.

NNs can replace existing model components to speed-up simulations.

NNs were used to replace the radiation scheme in ECMWF weather forecasts in the past. (Chevallier et al. 2000)

Resources that are saved can be re-invested to improve forecasts.

C ECMWF	Peter Düben	Page 17	SC THE ROYAL SOCIETY	ESCAPE

NNs can still be useful for global weather forecasting.

NNs can replace existing model components to speed-up simulations.

NNs were used to replace the radiation scheme in ECMWF weather forecasts in the past. (Chevallier et al. 2000)

Resources that are saved can be re-invested to improve forecasts.

We will now repeat this exercise.

CECMWF

Peter Düben

Page 17

Se THE ROYAL SOCIETY

Conclusions

- The Earth System is complex, chaotic and huge, and we do not have sufficient resolution to resolve all important processes. Therefore, weather and climate predictions are difficult.
- Earth System modelling is an HPC application.
- We make a lot of efforts to make the most of state-of-the-art and future supercomputing hardware (dwarfs, domain specific languages, scalable algorithms,...).
- ▶ We achieve promising results with the new generation of GPUs.
- A reduction in precision can improve efficiency within our models.
- Neural Networks may help to improve efficiency for existing model components in the future.

Peter Düben

Page 18

Se society

••