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The European Weather Centre (ECMWF)

www.ecmwf.int

» Independent, intergovernmental organisation supported by 34 states.

» Research institute and 24/7 operational weather service.

» Weather forecasts cover time frames from medium-range, to monthly and seasonal.
» Based in the UK, ~ 350 member of staff from 30 different countries.

-C ECMWF Peter Dilben



Predicting weather and climate: Why is it so hard?

Earth seen from Apollo 17 (NASA 1972)
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The Earth System is complex, chaotic and huge, and we do not have sufficient resolution
to resolve all important processes.
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Predicting weather and climate: Why is it so hard?

Clouds in a global weather simulation at 1 km resolution (Figure courtesy of Nils Wedi)

-C ECMWF Peter Dilben




High Performance Computing in Earth System Modelling

Weather and climate models are high performance computing applications.
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Parallelisation and performance will be essential for future model development.
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High Performance Computing in Earth System Modelling

Weather and climate models are high performance computing applications.

Forecast quality depends on resolution and model complexity.

Resolution depends on the performance of state-of-the-art supercomputers.

v

Individual processors will not be faster.
— Parallelisation (> 108 parallel processing units).

v

Parallelisation and performance will be essential for future model development.

v

We fail to operate close to peak performance.

» Power consumption will be a big problem.

The free lunch is over.
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ECMWF'’s scalability project towards exascale supercomputing
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ECMWF'’s scalability project towards exascale supercomputing
A community effort to takle the challenges:

» Define and encapsulate the fundamental algorithmic building blocks — 'Weather &
Climate Dwarfs’ — to port to accelerators and to allow co-design.

» Introduce domain specific languages.

» Develop new algorithms for use in extreme scale (elliptic solver, spatial discretisation,
time stepping methods,...).

eSsSiwace

CENTRE OF EXCELLENCE IN SIMULATION OF WEATHER
‘ AND CLIMATE IN EUROPE
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The ESCAPE project to test GPUs and other accelerators

... hardware
adaptation ...

Extract model dwarfs... .
... explore alternative

numerical algorithms ... ... reassemble model
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The transform dwarf on GPUs

» At ECMWF we work with a spectral model that describes model fields via global
basis functions.

» We need to transform fields between spectral and gridpoint space during every
timestep.

» The transformations represent a significant fraction of the computing cost and the
relativ cost is increasing with resolution.
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The transform dwarf on GPUs

» At ECMWF we work with a spectral model that describes model fields via global
basis functions.

» We need to transform fields between spectral and gridpoint space during every
timestep.

» The transformations represent a significant fraction of the computing cost and the
relativ cost is increasing with resolution.

Can we use GPUs to speed up the transform dwarf?
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The transform dwarf on GPUs

Spherical Harmonics Dwarf on NVIDIA Tesla P100
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The transform dwarf on GPUs
TCO639 LT on 4 NVIDIA P100 GPUs (DGX—1)
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To speed-up weather forecasts using low numerical precision

The weather and climate community is using double precision as default since decades.
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To speed-up weather forecasts using low numerical precision

The weather and climate community is using double precision as default since decades.

Reduce numerical precision
— lower power, higher performance.
— higher resolution or increased complexity.

— more accurate predictions of future weather and climate.

Temperature in Munich:

double precision (64 bits): 14.561192512512207°C
single precision (32 bits): 14.5611925°C

half precision (16 bits):  14.5625°C
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How can we trade precision against computing cost?

» double — single — half.
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How can we trade precision against computing cost?

v

double — single — half.
» Reduction of precision in data storage.
» Field Programmable Gate Arrays (FPGAS).

» Future perspective: Flexible precision hardware, probabilistic CMOS, pruned
hardware, hardware with frequent hardware faults,...
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How do we treat uncertainties in weather forecasts?
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How do we treat uncertainties in weather forecasts?
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How do we treat uncertainties in weather forecasts?

2m Temperature(°C) reduced to 512 m (station height) from 515 m (HRES) and 520 m (ENS)
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How do we treat uncertainties in weather forecasts?

2m Temperature(°C) reduced to 512 m (station height) from 515 m (HRES) and 520 m (ENS)
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Will a simulation with reduced precision change the ensemble spread?
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Reduced precision in an atmosphere model

» We calculate weather forecasts with a spectral dynamical core (full 3D dynamics on
the globe but no physics).

» Floating point precision is reduced to 8 bits in the significand using an emulator in
almost the entire model.

» We estimate energy savings in cooperation with computer scientists (the groups of
Krishna Palem - Rice University, Christian Enz - EPFL and John Augustine - IITM).

Resolution | Number of bits Normalised Forecast error
in significand | Energy Demand | Z500 at day 2

235 km 52 1.0 2.3

315 km 52 0.47 4.5

235 km 8 0.29 2.5
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Reduced precision in an atmosphere model

» We calculate weather forecasts with a spectral dynamical core (full 3D dynamics on
the globe but no physics).

» Floating point precision is reduced to 8 bits in the significand using an emulator in
almost the entire model.

» We estimate energy savings in cooperation with computer scientists (the groups of
Krishna Palem - Rice University, Christian Enz - EPFL and John Augustine - IITM).

Resolution | Number of bits Normalised Forecast error
in significand | Energy Demand | Z500 at day 2

235 km 52 1.0 2.3

315 km 52 0.47 4.5

235 km 8 0.29 2.5

We should reduce precision to allow simulations at higher resolution.
The IEEE floating point standard is not ideal.

Studies with real hardware (FPGAs) confirm this result.

Dlben et al. MWR 2015; Diuben et al. DATE 2015; Diiben et al. JAMES 2015; Russel, Diiben et al. FCCM 2015.
C ECMWF Peter Diiben




ECMWF’s weather forecast model in single precision
Single precision Double precision Analysis Reference

Surface temperature in °C

» Forecast quality in double and single precision is almost identical.
» 40% speed-up.

» Benefit for global simulations at 1.0 km resolution.

Dlben and Palmer MWR 2014; Vana, Diiben et al. MWR 2017
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Deep learning for weather forecasts?
Can Neural Networks (NNs) be used for global weather predictions?
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Deep learning for weather forecasts?
Can Neural Networks (NNs) be used for global weather predictions?

We perform tests with a toy model for atmospheric dynamics called Lorenz’95.
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Can Neural Networks (NNs) be used for global weather predictions?

We perform tests with a toy model for atmospheric dynamics called Lorenz’95.
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Deep learning for weather forecasts?

NNs can still be useful for global weather forecasting.
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Deep learning for weather forecasts?

NNs can replace existing model components to speed-up simulations.

NNs can still be useful for global weather forecasting.

NNs were used to replace the radiation scheme in ECMWF weather forecasts in the past.
(Chevallier et al. 2000)

Resources that are saved can be re-invested to improve forecasts.

We will now repeat this exercise.
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Conclusions

» The Earth System is complex, chaotic and huge, and we do not have sufficient
resolution to resolve all important processes. Therefore, weather and climate
predictions are difficult.

» Earth System modelling is an HPC application.

» We make a lot of efforts to make the most of state-of-the-art and future
supercomputing hardware (dwarfs, domain specific languages, scalable
algorithms,...).

» We achieve promising results with the new generation of GPUs.
» A reduction in precision can improve efficiency within our models.

» Neural Networks may help to improve efficiency for existing model components in the
future.

c ECMWF Peter Dilben




