# Modelling the Earth's climate system

Understand & Predict climate variability and changes

### **Climate change**

| <u>Multi-decadal to centuries</u>                                      | Multi annual to multi-decadal                                                          |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| <b>Scenarios and feedbacks</b><br>e.g. overshoot, clouds, carbon cycle | <b>Improve reliability at regional scale</b><br>e.g. extreme events (floods, droughts) |
| <b>Risks of Tipping points</b><br>e.g. permafrost, amazon dieback      | Impacts on food, resources, health                                                     |
| Mitigation                                                             | Adaptation                                                                             |

Accounting for multi-scale internal variability Investigating different forcing factors Uncertainties in models: structural, parametric

Understand mechanisms at different space & time scales Evaluate models on past observed climates, incl. paleoclimates, e.g. deglaciation



FOR EARTH SYSTEM MODEL

CNRS-CEA-Météo-France



# Coupled Model Intercomparison Project Phase 6 (CMIP6)







Dashboard stat ESGF: 13.5 M datasets 33.3 PB

CMIP6: 12.5 M datasets 23.8 PB (w/o replica 13.1) CMIP5: 5.3 PB (1.5)

ca 15 000 registered users



### **Exabytes to be reached before exaflops**



From NCAR (Gary Strand)

### Data needs & challenges

#### Increase of data

## Data workflow Compute services Wide range of users



### Climate models: at the core of climate information for mitigation and adaptation But also needed for understanding

#### A range of model configurations will be needed

From high to very-high resolution To lower resolutions with large ensembles, multi-models, complexity, long-term variability

Both approaches needed and complementary

### **Digital challenges**

**HPC**: prepare for future architectures although using legacy codes, ensemble of codes, complex workflows and having international production runs

**Data**: from managing large amounts of data near HPC to ease a wide access to large multi-model ensembles

IA: from model data analyses to model parameterisations and emulators