

Advanced Earth Observation to Quantify Mechanisms of Feedback, Interaction and Scale in the Earth System

Michael E. Schaepman

Content

- Aspects of computational challenges and data
- Mechanisms of integration, feedback and scale
- Dynamic vegetation and quantifying human impact
- Conclusions and outlook

Aspects of computational challenges and data

The Horn that Matters ...

Evolution of Forecast Skills

Improvements in forecasts come from repeated challenges to models by data over time

Evolution of Analytical Methods

Anomaly correlation of 500hPa height forecasts

www.nan.edu 2010: Assessment of

Transition of the Operating Environment (Data Deluge)

Polar orbiting imagers operating per decade (<100m resolution)

Observed and Future Climate Variability

Climate data (and other!) dramatically increase in volume and complexity.

In a data nutshell

- Nearing the 4th paradigm change in research (1. Theory, 2. Experiment, 3. HPC (numerical modelling), 4. BigData)
- In transit from data-poor to data-rich approaches
- Infrastructure as a service (IaaS) has become a commodity (Modeling as a Service (MaaS) not yet!)
- Data replication and reproducibility
 - In 2009 global data production exceeded global storage capacity production
 - New strategies and workflows must consider data that is not stored/archived

Data in another nutshell

- ... or the human dimension of data
 - Policy measures for science information and data management
 - Governance of a (world-wide) data-sharing attitude
 - Serving both, scientists and non-scientists with observed and predicted data, as well as advice
 - Attribution, environmental justice, and liability

Mechanisms of integration, feedback and scale

Changing views

The Knowns

The not so well knowns

Seasonal cycle of vegetation and the concentration of carbon dioxide in the atmosphere

Migrating Siberian shrubs

2009 1966

Feedback mechanisms

Photo: M. Schaepman, July 2013, Kytalyk research station, Yakutia Blok D. et al., (2010). Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Global Change Biology 16: 1296-1305.

Effects of scaling: physical baseline

Schaepman, M.E., Ustin, S.L., Plaza, A.J., Painter, T.H., Verrelst, J., & Liang, S. (2009). Earth system science related imaging spectroscopy--An assessment. *Remote Sensing of Environment*, 113, S123-S137

From needles to canopies

Rautiainen, M. et al. A note on upscaling coniferous needle spectra to shoot spectral albedo. RSE, 117, 469-474, 2012

Dynamic vegetation and quantifying human impact

A masurable planetary boundary for the biosphere

Conceptual Model of the Earth System

Human Dimensions of Global Environmental Change

Global transportation system

Global vegetation dynamics

Vegetation trend changes

Short term changes vs. long term trends

de Jong, R., Verbesselt, J., Schaepman, M.E., & de Bruin, S. (2012). Trend changes in global greening and browning: contribution of short-term trends to longer-term change. *Global Change Biology*, 18, 642-655

Biospheric trends: decadal changes

1981-1999

Nemani RR, Keeling CD, Hashimoto H et al. (2003) Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science, 300, 1560-1563.

Zhao M, Running SW (2010) Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science, 329, 940-943.

Trend changes in global climatologies

Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25, 693-712.

Vegetation changes: Factors

climatologies and changes in global vegetation activity. Global Change Biology, 19, 1953-1964.

Influencing factors

De Jong R, Schaepman ME, Furrer R, De Bruin S, Verburg PH (2013) Spatial relationship between climatologies and changes in global vegetation activity. Global Change Biology, 19, 1953-1964.

Conclusions and outlook

Conclusions and outlook

- A big gap still exists in *tackling 3rd (HPC) and 4th (BigData)* paradigm changes in science plans and work flows
- Coupling physical Earth system models to models of social interactions is still in its infancy
- Filling observational data gaps (CO_2 fertilization, O_3 , NO_x , P) will be key to future use of observational data in Earth models
- Key to sustainable use of big data will be sophisticated data selection systems
- Emerging Earth System Science curricula must educate *next* generation science professionals

Thank you for your attention!

