

LESSONS LEARNED IN DATA-DRIVEN SCIENCE

www.datascience.ch @SDSCdatascience

The Swiss Data Science Center

Accelerate the adoption of data science and AI in Switzerland

- An initiative from the ETH Domain, started in 2017
- Offices in Zurich and Lausanne
- Academic and industry collaborations

Academic projects

Industry

collaborations

RENKU platform

Closing the gaps in the data science journey

Data is everywhere

A fantastic source of data

Al needs better data, not just more data

BY LOWE FOR THE SUN-SENTINEL, FLOR

From raw data to unbiased information

Antarctic Circumnavigation Expedition

EPFL ETH zürich Expedition boat with 22 teams from South Africa to Australia to Chile in 90 days **Context:** Foster collaboration between teams of scientists, breaking data silos **Initial problem:** Model relationships between ocean / wave parameters and aerosols

PAUL SCHERRER INSTITUT

The Data-driven Science journey

Big Data /	Machine Learning /
Data lake	"Dumb" A.I.

Machine Learning 101

Explainable AI – What Are We Trying To Do?

© David Gunning , DARPA/I20

Distribution Unlimited)

Data-Driven Acoustical Design

Joint research collaboration with the Architecture group at ETH Zurich **Problem:** Modeling sound propagation and diffusion in everyday rooms **Initial results**: Estimation of impulsive response from different walls

ETH zürich

Deep Learning for Observational Cosmology

Joint research collaboration with the Cosmology Research Group at ETH Zurich **Problem:** Observational cosmology relies on computationally expensive simulations **Results**: Using a generative adversarial network (GAN), we can generate new approximate simulations for a fraction of the computational resources.

From AI to Data Science

DATA SCIENCE SKILLSET

Data science, due to its interdisciplinary nature, requires an intersection of abilities: **hacking skills**, **math and statistics knowledge**, and **substantive expertise** in a field of science.

Hacking skills are necessary for working with massive amounts of electronic data that must be acquired, cleaned, and manipulated.

Math and statistics knowledge allows a data scientist to choose appropriate methods and tools in order to extract insight from data.

K

Substantive expertise in a scientific field is crucial for generating motivating questions and hypotheses and interpreting results.

Machine learning stems from combining hacking skills with math and statistics knowledge, but does not require scientific motivation.

Danger zone! Hacking skills combined with substantive scientific expertise without rigorous methods can beget incorrect analyses.

Sharing data and knowledge, or lack thereof

credit: oxford creativity, https://www.triz.co.uk/

Five FAQs in Data-Driven Research

- 1. How did I compute this result?
- 2. How does new data change this result?
- 3. How did you compute *your* result?

Can I use your data to reproduce it? With your code? On your infrastructure?

- 4. Has anyone ever used an <XYZ-algorithm> on this data? How?
- 5. Who is using my data? and my algorithm? Why are they not citing me?!

Five Questions \rightarrow Three Words

Reproducibility Reusability Collaboration

www.datascience.ch @SDSCdatascience

